Jonathan J Lloyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5009401/publications.pdf

Version: 2024-02-01

13099 6996 27,160 160 68 citations h-index papers

154 g-index 168 168 168 22646 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Current perspectives on the terrestrial carbon cycle. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 336.	1.6	1
2	Estimates of regional surface carbon dioxide exchange and carbon and oxygen isotope discrimination during photosynthesis from concentration profiles in the atmospheric boundary layer. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 768.	1.6	11
3	Annual ecosystem respiration budget for a <i>Pinus sylvestris</i> stand in central Siberia. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 568.	1.6	21
4	A trace-gas climatology above Zotino, central Siberia. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 749.	1.6	21
5	Carbon balance of a southern taiga spruce stand in European Russia. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 429.	1.6	46
6	Inter-annual and seasonal variations of energy and water vapour fluxes above a <i>Pinus sylvestris</i> forest in the Siberian middle taiga. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 537.	1.6	18
7	Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus, Series B: Chemical and Physical Meteorology, 2022, 54, 677.	1.6	38
8	Primary modes of tree mortality in southwestern Amazon forests. Trees, Forests and People, 2022, 7, 100180.	1.9	0
9	Wood Nutrient-Water-Density Linkages Are Influenced by Both Species and Environment. Frontiers in Plant Science, 2022, 13, 778403.	3.6	4
10	Tropical Tree Species 3D Modelling and Classification Based on LiDAR Technology. , 2022, , 326-346.		0
11	Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots. Plants People Planet, 2021, 3, 295-300.	3.3	12
12	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
13	Fire regimes, fire experiments and alternative stable states in mesic savannas. New Phytologist, 2021, 231, 14-18.	7.3	O
14	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
15	Fixed or mixed? Variation in tree functional types and vegetation structure in a forest-savanna ecotone in West Africa. Journal of Tropical Ecology, 2020, 36, 133-149.	1,1	5
16	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
17	Functional Trait Variation Among and Within Species and Plant Functional Types in Mountainous Mediterranean Forests. Frontiers in Plant Science, 2020, 11, 212.	3.6	35
18	Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations. Soil, 2020, 6, 53-88.	4.9	36

#	Article	IF	CITATIONS
19	Tropical Tree Species 3D Modelling and Classification Based on LiDAR Technology. Advances in Multimedia and Interactive Technologies Book Series, 2020, , 1-22.	0.2	0
20	Tropical Tree Branch-Leaf Nutrient Scaling Relationships Vary With Sampling Location. Frontiers in Plant Science, 2019, 10, 877.	3.6	15
21	Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environmental Conservation, 2019, 46, 285-292.	1.3	18
22	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
23	Seeking Resistance in Coral Reef Ecosystems:ÂThe Interplay of Biophysical Factors and Bleaching Resistance under a Changing Climate. BioEssays, 2019, 41, e1800226.	2.5	21
24	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
25	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5. 2	78
26	On the relationship between fire regime and vegetation structure in the tropics. New Phytologist, 2018, 218, 153-166.	7.3	64
27	Functional trait variation related to gap dynamics in tropical moist forests: A vegetation modelling perspective. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 35, 52-64.	2.7	9
28	Rainforest trees respond to drought by modifying their hydraulic architecture. Ecology and Evolution, 2018, 8, 12479-12491.	1.9	34
29	Panâ€tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5 . 8	78
30	Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions. Carbon Balance and Management, 2017, 12, 1.	3.2	98
31	MODIS VCF should not be used to detect discontinuities in tree cover due to binning bias. A comment on Hanan et al. (2014) and Staver and Hansen (2015). Global Ecology and Biogeography, 2017, 26, 854-859.	5.8	16
32	Leafâ€evel photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	7.3	89
33	Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': implications for conservation. Environmental Conservation, 2016, 43, 317-326.	1.3	14
34	Evolutionary heritage influences Amazon tree ecology. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161587.	2.6	43
35	Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests. Journal of Ecology, 2016, 104, 497-506.	4.0	15
36	Separating species and environmental determinants of leaf functional traits in temperate rainforest plants along a soil-development chronosequence. Functional Plant Biology, 2016, 43, 751.	2.1	17

#	Article	IF	CITATIONS
37	Soil–Vegetation Interactions in Amazonia. Ecological Studies, 2016, , 267-299.	1.2	10
38	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	4.9	201
39	Edaphic, structural and physiological contrasts across Amazon Basin forest–savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences, 2015, 12, 6529-6571.	3.3	55
40	Structural, physiognomic and above-ground biomass variation in savanna–forest transition zones on three continents – how different are co-occurring savanna and forest formations?. Biogeosciences, 2015, 12, 2927-2951.	3.3	63
41	The influence of C ₃ and C ₄ vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 2015, 12, 5041-5059.	3.3	19
42	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	7.3	350
43	Foliar trait contrasts between African forest and savanna trees: genetic versus environmental effects. Functional Plant Biology, 2015, 42, 63.	2.1	23
44	Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia, 2015, 178, 659-672.	2.0	25
45	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
46	Contrasting photosynthetic characteristics of forest vs. savanna species (Far North Queensland,) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
47	Insights into biogeochemical cycling from a soil evolution model and long-term chronosequences. Biogeosciences, 2014, 11, 6873-6894.	3.3	4
48	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	12.8	169
49	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
50	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	3.6	87
51	Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecology and Diversity, 2014, 7, 281-292.	2.4	97
52	Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology and Diversity, 2014, 7, 231-240.	2.4	9
53	Tropical forest wood production: a crossâ€continental comparison. Journal of Ecology, 2014, 102, 1025-1037.	4.0	77
54	Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 2014, 506, 76-80.	27.8	398

#	Article	IF	Citations
55	Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil ¹⁵ N: ¹⁴ N measurements. Plant Ecology and Diversity, 2014, 7, 173-187.	2.4	43
56	Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1820-1830.	3.0	11
57	Photosynthesis–nitrogen relationships in tropical forest tree species as affected by soil phosphorus availability: a controlled environment study. Functional Plant Biology, 2014, 41, 820.	2.1	42
58	Light inhibition of leaf respiration as soil fertility declines along a post-glacial chronosequence in New Zealand: an analysis using the Kok method. Plant and Soil, 2013, 367, 163-182.	3.7	53
59	Residence times of woody biomass in tropical forests. Plant Ecology and Diversity, 2013, 6, 139-157.	2.4	104
60	Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 2013, 6, 268-273.	12.9	358
61	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105
62	Humans, megafauna and environmental change in tropical Australia. Journal of Quaternary Science, 2013, 28, 439-452.	2.1	38
63	Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120295.	4.0	264
64	Sensitivity of plants to changing atmospheric <scp>CO</scp> ₂ concentration: from the geological past to the next century. New Phytologist, 2013, 197, 1077-1094.	7.3	336
65	Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand?. New Phytologist, 2013, 199, 311-321.	7.3	114
66	Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters, 2013, 40, 1729-1733.	4.0	284
67	High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 2012, 7, 024002.	5. 2	241
68	Quantifying the abundance and stable isotope composition of pyrogenic carbon using hydrogen pyrolysis. Rapid Communications in Mass Spectrometry, 2012, 26, 2690-2696.	1.5	39
69	Deriving Plant Functional Types for Amazonian forests for use in vegetation dynamics models. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 97-110.	2.7	42
70	Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9, 2203-2246.	3.3	487
71	Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences, 2012, 9, 775-801.	3.3	45
72	The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences, 2012, 9, 5407-5430.	3. 3	78

#	Article	IF	Citations
73	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
74	Variation in soil carbon stocks and their determinants across a precipitation gradient in <scp>W</scp> est <scp>A</scp> frica. Global Change Biology, 2012, 18, 1670-1683.	9.5	114
75	Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology, 2012, 18, 2676-2676.	9.5	2
76	Investigating diversity dependence of tropical forest litter decomposition: experiments and observations from Central Africa. Journal of Vegetation Science, 2012, 23, 223-235.	2.2	21
77	What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 2012, 21, 1179-1190.	5.8	187
78	Height-diameter allometry of tropical forest trees. Biogeosciences, 2011, 8, 1081-1106.	3.3	396
79	Soil Does Not Explain Monodominance in a Central African Tropical Forest. PLoS ONE, 2011, 6, e16996.	2.5	47
80	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
81	Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology, 2011, 99, 891-898.	4.0	137
82	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	4.0	71
83	Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 2011, 8, 1415-1440.	3.3	340
84	Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmospheric Chemistry and Physics, 2010, 10, 9251-9282.	4.9	103
85	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	7.3	487
86	Coâ€limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell and Environment, 2010, 33, 959-980.	5.7	192
87	Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences, 2010, 7, 1515-1541.	3.3	365
88	Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences, 2010, 7, 1833-1859.	3.3	150
89	Does the disturbance hypothesis explain the biomass increase in basinâ€wide Amazon forest plot data?. Global Change Biology, 2009, 15, 2418-2430.	9.5	74
90	Biomass and leafâ€level gas exchange characteristics of three African savanna C ₄ grass species under optimum growth conditions. African Journal of Ecology, 2009, 47, 482-489.	0.9	1

#	Article	IF	CITATIONS
91	Increasing carbon storage in intact African tropical forests. Nature, 2009, 457, 1003-1006.	27.8	816
92	Are the dynamics of tropical forests dominated by large and rare disturbance events?. Ecology Letters, 2009, 12, E19-21; discussion E22-5.	6.4	37
93	Changing Ecology of Tropical Forests: Evidence and Drivers. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 529-549.	8.3	229
94	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	12.6	1,443
95	The regional carbon budget. Geophysical Monograph Series, 2009, , 409-428.	0.1	10
96	Ecosystem carbon fluxes and Amazonian forest metabolism. Geophysical Monograph Series, 2009, , 389-407.	0.1	18
97	Climateâ€dependent variations in leaf respiration in a dryâ€land, low productivity Mediterranean forest: the importance of acclimation in both highâ€light and shaded habitats. Functional Ecology, 2008, 22, 172-184.	3.6	24
98	Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiology, 2008, 28, 451-468.	3.1	132
99	Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytologist, 2008, 177, 428-442.	7.3	63
100	Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana. Tree Physiology, 2008, 28, 417-424.	3.1	23
101	Seasonal variations in soil water in two woodland savannas of central Brazil with different fire histories. Tree Physiology, 2008, 28, 405-415.	3.1	43
102	Photosynthetic properties of C4 plants growing in an African savanna/wetland mosaic. Journal of Experimental Botany, 2008, 59, 3941-3952.	4.8	28
103	Effects of rising temperatures and [CO ₂] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1811-1817.	4.0	416
104	Seasonal and inter-annual photosynthetic response of representative C ₄ species to soil water content and leaf nitrogen concentration across a tropical seasonal floodplain. Journal of Tropical Ecology, 2008, 24, 201-213.	1.1	3
105	Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2. Science, 2007, 316, 1732-1735.	12.6	775
106	Variations in 13C discrimination during CO2exchange by Picea sitchensis branches in the field. Plant, Cell and Environment, 2007, 30, 600-616.	5.7	130
107	Excitation energy partitioning and quenching during cold acclimation in Scots pine. Tree Physiology, 2006, 26, 325-336.	3.1	54
108	Diurnally variable 180 signatures of soil CO2 fluxes indicate carbonic anhydrase activity in a forest soil. Journal of Geophysical Research, 2006, 111, .	3.3	34

#	Article	IF	Citations
109	Non-steady state effects in diurnal 180 discrimination by Picea sitchensis branches in the field. Plant, Cell and Environment, 2006, 29, 928-939.	5 . 7	42
110	Modelling Amazonian forest eddy covariance data: a comparison of big leaf versus sun/shade models for the C-14 tower at Manaus I. Canopy photosynthesis. Acta Amazonica, 2006, 36, 69-82.	0.7	33
111	Regeneration patterns in boreal Scots pine glades linked to cold-induced photoinhibition. Tree Physiology, 2005, 25, 1139-1150.	3.1	36
112	Seasonal variation in energy fluxes and carbon dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern Africa. Global Change Biology, 2004, 10, 318-328.	9.5	124
113	Variation in wood density determines spatial patterns inAmazonian forest biomass. Global Change Biology, 2004, 10, 545-562.	9.5	633
114	Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology, 2004, 10, 995-1008.	9.5	197
115	High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian Cerrado. Global Change Biology, 2004, 10, 877-885.	9.5	42
116	The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 2004, 10, 563-591.	9.5	436
117	Using a One-and-a-Half Order Closure Model of the Atmospheric Boundary Layer for Surface Flux Footprint Estimation. Boundary-Layer Meteorology, 2004, 112, 467-502.	2.3	56
118	Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 381-407.	4.0	370
119	Observations of O2:CO2exchange ratios during ecosystem gas exchange. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	42
120	Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 421-436.	4.0	250
121	Microbial characteristics of soils on a latitudinal transect in Siberia. Global Change Biology, 2003, 9, 1106-1117.	9.5	58
122	Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology, 2003, 9, 1410-1426.	9.5	273
123	Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2concentration. Global Biogeochemical Cycles, 2002, 16, 5-1-5-13.	4.9	133
124	Interannual growth rate variations of atmospheric CO2and its $\hat{1}$ 13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles, 2002, 16, 21-1-21-22.	4.9	245
125	Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 590-610.	1.6	37
126	A simple three-dimensional canopy – planetary boundary layer simulation model for scalar concentrations and fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 784-819.	1.6	5

#	Article	IF	CITATIONS
127	Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 655-676.	1.6	4
128	A trace-gas climatology above Zotino, central Siberia. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 749-767.	1.6	28
129	Estimates of regional surface carbon dioxide exchange and carbon and oxygen isotope discrimination during photosynthesis from concentration profiles in the atmospheric boundary layer. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 768-783.	1.6	33
130	Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 537-551.	1.6	32
131	Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 677-687.	1.6	80
132	Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 552-567.	1.6	48
133	Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 514-530.	1.6	79
134	Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog I. Interseasonal and interannual variability of energy and latent heat fluxes during the snowfree period. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 497-513.	1.6	48
135	Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 655-676.	1.6	25
136	Carbon balance of a southern taiga spruce stand in European Russia. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 429-442.	1.6	54
137	Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 590-610.	1.6	75
138	Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 568-589.	1.6	35
139	A simple three-dimensional canopy - planetary boundary layer simulation model for scalar concentrations and fluxes. Tellus, Series B: Chemical and Physical Meteorology, 2002, 54, 784-819.	1.6	85
140	Vertical profiles, boundary layer budgets, and regional flux estimates for CO2and its13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochemical Cycles, 2001, 15, 267-284.	4.9	83
141	Evaporation in the Boreal Zone During Summerâ€"Physics and Vegetation. , 2001, , 151-165.		7
142	Do slow-growing species and nutrient-stressed plants consistently respond less to elevated CO2? A	9.5	20
143	Modeling13C discrimination in tree rings. Global Biogeochemical Cycles, 2000, 14, 213-223.	4.9	45
144	KEYNOTE PERSPECTIVE. Current perspectives on the terrestrial carbon cycle. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 336-342.	1.6	30

#	Article	IF	CITATIONS
145	Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink $\hat{a} \in \hat{a} \in \hat{a}$ a synthesis. Global Change Biology, 1999, 5, 703-722.	9.5	338
146	C-quest in the Amazon Basin. Nature, 1998, 396, 619-620.	27.8	47
147	Fluxes of carbon dioxide and water vapour over a C4 pasture in southwestern Amazonia (Brazil). Functional Plant Biology, 1998, 25, 519.	2.1	46
148	The CO 2 Dependence of Photosynthesis, Plant Growth Responses to Elevated Atmospheric CO 2 Concentrations and Their Interaction with Soil Nutrient Status. I. General Principles and Forest Ecosystems. Functional Ecology, 1996, 10, 4.	3.6	308
149	The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biology, 1996, 2, 209-217.	9.5	196
150	Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Global Change Biology, 1995, 1, 1-12.	9.5	205
151	A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell and Environment, 1995, 18, 1129-1145.	5.7	278
152	Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in Southwest Amazonia, 1992 to 1993. Science, 1995, 270, 778-780.	12.6	436
153	On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant, Cell and Environment, 1995, 18, 149-157.	5.7	322
154	Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta, 1994, 193, 331-340.	3.2	197
155	13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia, 1994, 99, 201-215.	2.0	516
156	Terrestrial carbon storage at the LGM. Nature, 1994, 371, 566-566.	27.8	93
157	On the Temperature Dependence of Soil Respiration. Functional Ecology, 1994, 8, 315.	3.6	3,249
158	Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature, 1993, 363, 439-443.	27.8	374
159	Carbon and Oxygen Isotope Effects in the Exchange of Carbon Dioxide between Terrestrial Plants and the Atmosphere., 1993,, 47-70.		460
160	Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant, Cell and Environment, 1992, 15, 873-899.	5.7	281