Gabriella Lindgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500935/publications.pdf

Version: 2024-02-01

63 papers 3,286 citations

218592 26 h-index 56 g-index

68 all docs 68
docs citations

68 times ranked 3152 citing authors

#	Article	IF	CITATIONS
1	Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature, 2012, 488, 642-646.	13.7	364
2	A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics, 2008, 40, 1004-1009.	9.4	271
3	Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds. PLoS Genetics, 2013, 9, e1003211.	1.5	240
4	Fitness loss and germline mutations in barn swallows breeding in Chernobyl. Nature, 1997, 389, 593-596.	13.7	239
5	Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data. PLoS ONE, 2013, 8, e54997.	1.1	214
6	A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies. PLoS Genetics, 2012, 8, e1002451.	1.5	208
7	A missense mutation in PMEL17 is associated with the Silver coat color in the horse. BMC Genetics, 2006, 7, 46.	2.7	139
8	Limited number of patrilines in horse domestication. Nature Genetics, 2004, 36, 335-336.	9.4	136
9	GENDER AND ENVIRONMENTAL SENSITIVITY IN NESTLING COLLARED FLYCATCHERS. Ecology, 1998, 79, 1939-1948.	1.5	121
10	Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds. BMC Genomics, 2017, 18, 565.	1.2	116
11	First Comprehensive Low-Density Horse Linkage Map Based on Two 3-Generation, Full-Sibling, Cross-Bred Horse Reference Families. Genomics, 2000, 66, 123-134.	1.3	115
12	Genetical and physical assignments of equine microsatellitesâ€"first integration of anchored markers in horse genome mapping. Mammalian Genome, 1997, 8, 267-273.	1.0	95
13	The genetic origin and history of speed in the Thoroughbred racehorse. Nature Communications, 2012, 3, 643.	5.8	77
14	Y Chromosome Uncovers the Recent Oriental Origin of Modern Stallions. Current Biology, 2017, 27, 2029-2035.e5.	1.8	75
15	Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nature Genetics, 2016, 48, 152-158.	9.4	59
16	A Primary Male Autosomal Linkage Map of the Horse Genome. Genome Research, 1998, 8, 951-966.	2.4	53
17	EquineÂMultiple Congenital Ocular Anomalies and Silver Coat Colour Result from the Pleiotropic Effects of Mutant PMEL. PLoS ONE, 2013, 8, e75639.	1.1	46
18	Mate replacement in experimentally widowed collared flycatchers (Ficedula albicollis): determinants and outcomes. Behavioral Ecology and Sociobiology, 1999, 46, 141-148.	0.6	43

#	Article	IF	CITATIONS
19	The same ELA class II risk factors confer equine insect bite hypersensitivity in two distinct populations. Immunogenetics, 2012, 64, 201-208.	1.2	40
20	Multiple congenital ocular anomalies in Icelandic horses. BMC Veterinary Research, 2011, 7, 21.	0.7	39
21	The horse Y chromosome as an informative marker for tracing sire lines. Scientific Reports, 2019, 9, 6095.	1.6	39
22	Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds. Genes, 2019, 10, 491.	1.0	37
23	Equine Multiple Congenital Ocular Anomalies maps to a 4.9 megabase interval on horse chromosome 6. BMC Genetics, 2008, 9, 88.	2.7	36
24	Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics, 2019, 20, 717.	1.2	35
25	The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. Molecular Immunology, 2010, 47, 2295-2302.	1.0	31
26	Large Deletions at the SHOX Locus in the Pseudoautosomal Region Are Associated with Skeletal Atavism in Shetland Ponies. G3: Genes, Genomes, Genetics, 2016, 6, 2213-2223.	0.8	29
27	Using an Inbred Horse Breed in a High Density Genome-Wide Scan for Genetic Risk Factors of Insect Bite Hypersensitivity (IBH). PLoS ONE, 2016, 11, e0152966.	1.1	28
28	Inter- and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds. BMC Genomics, 2019, 20, 759.	1.2	22
29	Copy number variations in Friesian horses and genetic risk factors for insect bite hypersensitivity. BMC Genetics, 2018, 19, 49.	2.7	21
30	Icelandic horses with the Silver coat colour show altered behaviour in a fear reaction test. Applied Animal Behaviour Science, 2013, 146, 72-78.	0.8	19
31	Genome data uncover four synergistic key regulators for extremely small body size in horses. BMC Genomics, 2018, 19, 492.	1.2	18
32	An investigation into factors influencing basal eye temperature in the domestic horse (Equus) Tj ETQq0 0 0 rgBT 2021, 228, 113218.	Overlock 1.0	10 Tf 50 22: 17
33	Genome-Wide Association Study of Insect Bite Hypersensitivity in Swedish-Born Icelandic Horses. Journal of Heredity, 2015, 106, 366-374.	1.0	16
34	Selection on the Colombian paso horse's gaits has produced kinematic differences partly explained by the DMRT3 gene. PLoS ONE, 2018, 13, e0202584.	1.1	15
35	A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism. BMC Genetics, 2018, 19, 80.	2.7	15
36	Mapping of 13 horse genes by fluorescence in-situ hybridization (FISH) and somatic cell hybrid analysis. Chromosome Research, 2001, 9, 53-59.	1.0	14

#	Article	IF	Citations
37	Targeted analysis of four breeds narrows equine Multiple Congenital Ocular Anomalies locus to 208 kilobases. Mammalian Genome, 2011, 22, 353-360.	1.0	13
38	DifferentDMRT3Genotypes Are Best Adapted for Harness Racing and Riding in Finnhorses. Journal of Heredity, 2015, 106, esv062.	1.0	13
39	A potential regulatory region near the EDN3 gene may control both harness racing performance and coat color variation in horses. Physiological Reports, 2018, 6, e13700.	0.7	13
40	The importance of the DMRT3 â€~Gait keeper' mutation on riding traits and gaits in Standardbred and Icelandic horses. Livestock Science, 2015, 176, 33-39.	0.6	12
41	Population Genetic Analysis of the Estonian Native Horse Suggests Diverse and Distinct Genetics, Ancient Origin and Contribution from Unique Patrilines. Genes, 2019, 10, 629.	1.0	12
42	Genomic measures of inbreeding in the Norwegian–Swedish Coldblooded Trotter and their associations with known QTL for reproduction and health traits. Genetics Selection Evolution, 2019, 51, 22.	1.2	12
43	Y-Chromosome Analysis in Retuertas Horses. PLoS ONE, 2013, 8, e64985.	1.1	11
44	The refractive state of the eye in Icelandic horses with the Silver mutation. BMC Veterinary Research, 2017, 13, 153.	0.7	11
45	Genomeâ€wide association study for insect bite hypersensitivity susceptibility in horses revealed novel associated loci on chromosome 1. Journal of Animal Breeding and Genetics, 2020, 137, 223-233.	0.8	9
46	A genome-wide scan for candidate lethal variants in Thoroughbred horses. Scientific Reports, 2020, 10, 13153.	1.6	9
47	Characterization of a Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as a Risk Factor for Disorders of Sex Development and Reproduction. Genes, 2020, 11, 251.	1.0	9
48	Lack of significant associations with early career performance suggest no link between the DMRT3 "Gait Keeper―mutation and precocity in Coldblooded trotters. PLoS ONE, 2017, 12, e0177351.	1.1	9
49	A Genome-Wide Association Analysis in Noriker Horses Identifies a SNP Associated With Roan Coat Color. Journal of Equine Veterinary Science, 2020, 88, 102950.	0.4	8
50	"Adopt-a-Tissue―Initiative Advances Efforts to Identify Tissue-Specific Histone Marks in the Mare. Frontiers in Genetics, 2021, 12, 649959.	1.1	8
51	A QTL for conformation of back and croup influences lateral gait quality in Icelandic horses. BMC Genomics, 2021, 22, 267.	1.2	7
52	Conformation Traits and Gaits in the Icelandic Horse are Associated with Genetic Variants in <i>Myostatin</i> (<i>MSTN</i>). Journal of Heredity, 2016, 107, 431-437.	1.0	6
53	Genomic Regions Associated with IgE Levels against Culicoides spp. Antigens in Three Horse Breeds. Genes, 2019, 10, 597.	1.0	6
54	Prevalence and genetic parameters for cryptorchidism in Swedish-born Icelandic horses. Livestock Science, 2015, 180, 1-5.	0.6	5

#	Article	IF	CITATIONS
55	Genome-Wide Association Analyses of Osteochondrosis in Belgian Warmbloods Reveal Candidate Genes Associated With Chondrocyte Development. Journal of Equine Veterinary Science, 2022, 111, 103870.	0.4	5
56	Exploring the genetics of trotting racing ability in horses using a unique Nordic horse model. BMC Genomics, 2019, 20, 104.	1.2	4
57	Genetics of Skin Disease in Horses. Veterinary Clinics of North America Equine Practice, 2020, 36, 323-339.	0.3	4
58	Genetic diversity and selection in Puerto Rican horses. Scientific Reports, 2022, 12, 515.	1.6	4
59	Identification of novel candidate genes for the inverted teat defect in sows using a genome-wide marker panel. Journal of Applied Genetics, 2017, 58, 249-259.	1.0	3
60	Exploring the genetics underpinning dynamic laryngeal collapse associated with poll flexion in Norwegianâ€Swedish Coldblooded Trotter racehorses. Equine Veterinary Journal, 2020, 52, 174-180.	0.9	3
61	Benefits and risks of barefoot harness racing in Standardbred trotters. Animal Science Journal, 2020, 91, e13380.	0.6	3
62	Frequencies of polymorphisms in myostatin vary in Icelandic horses according to the use of the horses. Animal Genetics, 2015, 46, 467-468.	0.6	2
63	Equine vitiligo-like depigmentation in grey horses is related to genes involved in immune response and tumor metastasis. BMC Veterinary Research, 2021, 17, 336.	0.7	1