JérÃ'me F L Duval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5009111/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Electrophoresis of Diffuse Soft Particles. Langmuir, 2006, 22, 3533-3546.	3.5	237
2	Progress in electrohydrodynamics of soft microbial particle interphases. Current Opinion in Colloid and Interface Science, 2010, 15, 184-195.	7.4	178
3	Humic Substances Are Soft and Permeable: Evidence from Their Electrophoretic Mobilitiesâ€. Environmental Science & Technology, 2005, 39, 6435-6445.	10.0	175
4	Aggregation and surface properties of F-specific RNA phages: Implication for membrane filtration processes. Water Research, 2008, 42, 2769-2777.	11.3	145
5	Impact of Chemical and Structural Anisotropy on the Electrophoretic Mobility of Spherical Soft Multilayer Particles: The Case of Bacteriophage MS2. Biophysical Journal, 2008, 94, 3293-3312.	0.5	126
6	Electrokinetics of Diffuse Soft Interfaces. 1. Limit of Low Donnan Potentials. Langmuir, 2004, 20, 10324-10336.	3.5	89
7	Automated Force Volume Image Processing for Biological Samples. PLoS ONE, 2011, 6, e18887.	2.5	86
8	Coupled Electrostatic, Hydrodynamic, and Mechanical Properties of Bacterial Interfaces in Aqueous Media. Langmuir, 2008, 24, 10988-10995.	3.5	84
9	Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 178-187.	4.7	84
10	Electrokinetics of Diffuse Soft Interfaces. 2. Analysis Based on the Nonlinear Poissonâ 'Boltzmann Equation. Langmuir, 2005, 21, 3247-3258.	3.5	83
11	Solâ^'Gel and Isotropic/Nematic Transitions in Aqueous Suspensions of Natural Nontronite Clay. Influence of Particle Anisotropy. 2. Gel Structure and Mechanical Properties. Langmuir, 2009, 25, 127-139.	3.5	83
12	Bipolar electrode behaviour of the aluminium surface in a lateral electric field. Journal of Electroanalytical Chemistry, 2001, 505, 1-11.	3.8	82
13	Efficiency of MS2 phage and QÎ ² phage removal by membrane filtration in water treatment: Applicability of real-time RT-PCR method. Journal of Membrane Science, 2009, 326, 111-116.	8.2	82
14	Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces. Journal of Colloid and Interface Science, 2015, 446, 327-334.	9.4	81
15	Double Layer of a Gold Electrode Probed by AFM Force Measurements. Langmuir, 2003, 19, 1133-1139.	3.5	79
16	Impact of Internal RNA on Aggregation and Electrokinetics of Viruses: Comparison between MS2 Phage and Corresponding Virus-Like Particles. Applied and Environmental Microbiology, 2011, 77, 4939-4948.	3.1	77
17	Analysis of the Interfacial Properties of Fibrillated and Nonfibrillated Oral Streptococcal Strains from Electrophoretic Mobility and Titration Measurements:Â Evidence for the Shortcomings of the â€~Classical Soft-Particle Approach'. Langmuir, 2005, 21, 11268-11282.	3.5	74
18	The Major Surface-Associated Saccharides of Klebsiella pneumoniae Contribute to Host Cell Association. PLoS ONE, 2008, 3, e3817.	2.5	72

#	Article	IF	CITATIONS
19	Amphifunctionally Electrified Interfaces:Â Coupling of Electronic and Ionic Surface-Charging Processes. Langmuir, 2001, 17, 7573-7581.	3.5	70
20	Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress. PLoS ONE, 2011, 6, e20066.	2.5	69
21	Faradaic depolarization in the electrokinetics of the metal–electrolyte solution interface. Journal of Colloid and Interface Science, 2003, 260, 95-106.	9.4	67
22	Electrokinetics of Diffuse Soft Interfaces. IV. Analysis of Streaming Current Measurements at Thermoresponsive Thin Films. Langmuir, 2009, 25, 10691-10703.	3.5	63
23	Electrostatic interactions between diffuse soft multi-layered (bio)particles: beyond Debye–Hückel approximation and Deryagin formulation. Physical Chemistry Chemical Physics, 2011, 13, 1037-1053.	2.8	61
24	Electrostatic interactions between immunoglobulin (IgG) molecules and a charged sorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 29-42.	4.7	59
25	Hetero-interaction between Gouy–Stern double layers: Charge and potential regulation. Advances in Colloid and Interface Science, 2005, 114-115, 27-45.	14.7	57
26	Shell Structure of Natural Rubber Particles: Evidence of Chemical Stratification by Electrokinetics and Cryo-TEM. Langmuir, 2013, 29, 14655-14665.	3.5	57
27	Electrohydrodynamics of Soft Polyelectrolyte Multilayers: Point of Zero-Streaming Current. Langmuir, 2011, 27, 10739-10752.	3.5	56
28	Electrokinetics of Diffuse Soft Interfaces. III. Interpretation of Data on the Polyacrylamide/Water Interface. Langmuir, 2005, 21, 6220-6227.	3.5	55
29	Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Scientific Reports, 2019, 9, 9696.	3.3	54
30	On the use of electrokinetics for unraveling charging and structure of soft planar polymer films. Current Opinion in Colloid and Interface Science, 2013, 18, 83-92.	7.4	53
31	Electrostatic Interactions between Double Layers:Â Influence of Surface Roughness, Regulation, and Chemical Heterogeneities. Langmuir, 2004, 20, 5052-5065.	3.5	48
32	Probing Surface Structures of Shewanella spp. by Microelectrophoresis. Biophysical Journal, 2006, 90, 2612-2621.	0.5	48
33	On the applicability of the Brinkman equation in soft surface electrokinetics. Journal of Colloid and Interface Science, 2010, 350, 1-4.	9.4	48
34	Interrelations between charging, structure and electrokinetics of nanometric polyelectrolyte films. Journal of Colloid and Interface Science, 2011, 362, 439-449.	9.4	48
35	Coupling of Lateral Electric Field and Transversal Faradaic Processes at the Conductor/Electrolyte Solution Interface. Journal of Physical Chemistry B, 2003, 107, 4143-4155.	2.6	47
36	The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 131-137.	2.3	45

#	Article	IF	CITATIONS
37	Electrokinetics of a Poly(<i>N</i> -isopropylacrylamid- <i>co</i> -carboxyacrylamid) Soft Thin Film: Evidence of Diffuse Segment Distribution in the Swollen State. Langmuir, 2010, 26, 18169-18181.	3.5	44
38	Chemodynamics of Metal Complexation by Natural Soft Colloids: Cu(II) Binding by Humic Acid. Journal of Physical Chemistry A, 2012, 116, 6489-6496.	2.5	43
39	Surface Ionization State and Nanoscale Chemical Composition of UV-Irradiated Poly(dimethylsiloxane) Probed by Chemical Force Microscopy, Force Titration, and Electrokinetic Measurements. Langmuir, 2007, 23, 5430-5438.	3.5	42
40	Multiscale dynamics of the cell envelope of Shewanella putrefaciens as a response to pH change. Colloids and Surfaces B: Biointerfaces, 2006, 52, 108-116.	5.0	41
41	Rates of Ionic Reactions With Charged Nanoparticles In Aqueous Media. Journal of Physical Chemistry A, 2012, 116, 6443-6451.	2.5	41
42	Rigorous Analysis of Reversible Faradaic Depolarization Processes in the Electrokinetics of the Metal/Electrolyte Solution Interface. Journal of Physical Chemistry B, 2003, 107, 6782-6800.	2.6	39
43	Remarkable Electrokinetic Features of Charge-Stratified Soft Nanoparticles: Mobility Reversal in Monovalent Aqueous Electrolyte. Langmuir, 2015, 31, 5656-5666.	3.5	38
44	Electrokinetics of soft polymeric interphases with layered distribution of anionic and cationic charges. Current Opinion in Colloid and Interface Science, 2016, 24, 1-12.	7.4	38
45	Quasi-reversible Faradaic Depolarization Processes in the Electrokinetics of the Metal/Solution Interface. Journal of Physical Chemistry B, 2006, 110, 6081-6094.	2.6	35
46	Orientational Order of Colloidal Disk-Shaped Particles under Shear-Flow Conditions: a Rheologicalâ^`Small-Angle X-ray Scattering Study. Journal of Physical Chemistry B, 2010, 114, 16347-16355.	2.6	34
47	Understanding the Extraordinary Ionic Reactivity of Aqueous Nanoparticles. Langmuir, 2013, 29, 10297-10302.	3.5	34
48	Electrohydrodynamic Properties of Succinoglycan as Probed by Fluorescence Correlation Spectroscopy, Potentiometric Titration and Capillary Electrophoresis. Biomacromolecules, 2006, 7, 2818-2826.	5.4	33
49	Impact of the virus purification protocol on aggregation and electrokinetics of MS2 phages and corresponding virus-like particles. Physical Chemistry Chemical Physics, 2013, 15, 5691.	2.8	33
50	Structure of Multiresponsive Brush-Decorated Nanoparticles: A Combined Electrokinetic, DLS, and SANS Study. Langmuir, 2015, 31, 4779-4790.	3.5	31
51	Impacts of pH-mediated EPS structure on probiotic bacterial pili–whey proteins interactions. Colloids and Surfaces B: Biointerfaces, 2015, 134, 332-338.	5.0	30
52	Electrophoretic Deposition: A Quantitative Model for Particle Deposition and Binder Formation from Alcohol-Based Suspensions. Journal of Colloid and Interface Science, 2000, 222, 117-124.	9.4	29
53	Double layers at amphifunctionally electrified interfaces in the presence of electrolytes containing specifically adsorbing ions. Journal of Electroanalytical Chemistry, 2002, 532, 337-352.	3.8	29
54	Dynamics of metal uptake by charged biointerphases: bioavailability and bulk depletion. Physical Chemistry Chemical Physics, 2013, 15, 7873.	2.8	29

Jérôme F L Duval

#	Article	IF	CITATIONS
55	Electrokinetics of the amphifunctional metal/electrolyte solution interface in the presence of a redox couple. Journal of Colloid and Interface Science, 2004, 269, 211-223.	9.4	28
56	Cadmium accumulation and toxicity in the unicellular alga <i>Pseudokirchneriella subcapitata</i> : Influence of metalâ€binding exudates and exposure time. Environmental Toxicology and Chemistry, 2015, 34, 1524-1532.	4.3	27
57	Rigorous Physicochemical Framework for Metal Ion Binding by Aqueous Nanoparticulate Humic Substances: Implications for Speciation Modeling by the NICA-Donnan and WHAM Codes. Environmental Science & Technology, 2019, 53, 8516-8532.	10.0	26
58	Chemodynamics and bioavailability of metal ion complexes with nanoparticles in aqueous media. Environmental Science: Nano, 2017, 4, 2108-2133.	4.3	25
59	Electrokinetics as an alternative to neutron reflectivity for evaluation of segment density distribution in PEO brushes. Soft Matter, 2014, 10, 7804-7809.	2.7	24
60	Relationship between Swelling and the Electrohydrodynamic Properties of Functionalized Carboxymethyldextran Macromolecules. Langmuir, 2007, 23, 8460-8473.	3.5	23
61	Chemodynamics of Soft Charged Nanoparticles in Aquatic Media: Fundamental Concepts. Journal of Physical Chemistry A, 2013, 117, 7643-7654.	2.5	23
62	Metal Speciation Dynamics in Monodisperse Soft Colloidal Ligand Suspensions. Journal of Physical Chemistry A, 2008, 112, 7137-7151.	2.5	21
63	Metal Speciation Dynamics in Soft Colloidal Ligand Suspensions. Electrostatic and Site Distribution Aspects. Journal of Physical Chemistry A, 2009, 113, 2275-2293.	2.5	21
64	X-Ray Reflectivity at Polarized Liquid-Hg–Aqueous-Electrolyte Interface: Challenging Macroscopic Approaches for Ion-Specificity Issues. Physical Review Letters, 2012, 108, 206102.	7.8	21
65	Colloidal Properties of Recombinant Spider Silk Protein Particles. Journal of Physical Chemistry C, 2016, 120, 18015-18027.	3.1	21
66	Electrostatics and electrophoresis of engineered nanoparticles and particulate environmental contaminants: Beyond zeta potential-based formulation. Current Opinion in Colloid and Interface Science, 2022, 60, 101605.	7.4	21
67	Impacts of Papain and Neuraminidase Enzyme Treatment on Electrohydrodynamics and IgC-Mediated Agglutination of Type A Red Blood Cells. Langmuir, 2009, 25, 10873-10885.	3.5	19
68	Lability of Nanoparticulate Metal Complexes at a Macroscopic Metal Responsive (Bio)interface: Expression and Asymptotic Scaling Laws. Journal of Physical Chemistry C, 2018, 122, 6052-6065.	3.1	19
69	Electrophoresis of composite soft particles with differentiated core and shell permeabilities to ions and fluid flow. Journal of Colloid and Interface Science, 2020, 558, 280-290.	9.4	19
70	Fast automated processing of AFM PeakForce curves to evaluate spatially resolved Young modulus and stiffness of turgescent cells. RSC Advances, 2020, 10, 19258-19275.	3.6	19
71	Antibacterial activity of class IIa bacteriocin Cbn BM1 depends on the physiological state of the target bacteria. Research in Microbiology, 2012, 163, 323-331.	2.1	18
72	Impact of Electrostatics on the Chemodynamics of Highly Charged Metal–Polymer Nanoparticle Complexes. Langmuir, 2013, 29, 13821-13835.	3.5	18

#	Article	IF	CITATIONS
73	Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy. Nanoscale, 2018, 10, 12743-12753.	5.6	18
74	Polyethyleneimine-mediated flocculation of Shewanella oneidensis MR-1: Impacts of cell surface appendage and polymer concentration. Water Research, 2012, 46, 1838-1846.	11.3	17
75	Dynamics of metal uptake by charged soft biointerphases: impacts of depletion, internalisation, adsorption and excretion. Physical Chemistry Chemical Physics, 2014, 16, 7401-7416.	2.8	17
76	Electrodynamics of soft multilayered particles dispersions: dielectric permittivity and dynamic mobility. Physical Chemistry Chemical Physics, 2014, 16, 15173-15188.	2.8	17
77	Influence of ionic strength and polyelectrolyte concentration on the electrical conductivity of suspensions of soft colloidal polysaccharides. Journal of Colloid and Interface Science, 2015, 459, 212-217.	9.4	17
78	Effects of dielectric gradientsâ€mediated ions partitioning on the electrophoresis of composite soft particles: An analytical theory. Electrophoresis, 2021, 42, 153-162.	2.4	17
79	Adhesion of Campylobacter jejuni and Mycobacterium avium onto polyethylene terephtalate (PET) used for bottled waters. Water Research, 2008, 42, 4751-4760.	11.3	16
80	Dynamics of Metal Partitioning at the Cell–Solution Interface: Implications for Toxicity Assessment under Growth-Inhibiting Conditions. Environmental Science & Technology, 2015, 49, 6625-6636.	10.0	16
81	Evidence of Ion-Pairing in Cationic Brushes from Evaluation of Brush Charging and Structure by Electrokinetic and Surface Conductivity Analysis. Journal of Physical Chemistry C, 2017, 121, 2915-2922.	3.1	16
82	Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core–shell and hard particle types. Physical Chemistry Chemical Physics, 2017, 19, 11802-11815.	2.8	16
83	Addressing the electrostatic component of protons binding to aquatic nanoparticles beyond the Non-Ideal Competitive Adsorption (NICA)-Donnan level: Theory and application to analysis of proton titration data for humic matter. Journal of Colloid and Interface Science, 2021, 583, 642-651.	9.4	16
84	lsotropic/nematic and sol/gel transitions in aqueous suspensions of size selected nontronite NAu1. Clay Minerals, 2013, 48, 663-685.	0.6	15
85	Atomic force microscopy analysis of IgG films at hydrophobic surfaces: A promising method to probe IgG orientations and optimize ELISA tests performance. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 138-145.	2.3	15
86	Osmotic stress and vesiculation as key mechanisms controlling bacterial sensitivity and resistance to TiO2 nanoparticles. Communications Biology, 2021, 4, 678.	4.4	15
87	Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels. Journal of Colloid and Interface Science, 2006, 297, 341-352.	9.4	14
88	Metal Speciation Dynamics in Dispersions of Soft Colloidal Ligand Particles under Steady-State Laminar Flow Condition. Journal of Physical Chemistry A, 2009, 113, 12791-12804.	2.5	14
89	Impact of the virulence-associated MAb3/1 epitope on the physicochemical surface properties of Legionella pneumophila sg1: An issue to explain infection potential?. Colloids and Surfaces B: Biointerfaces, 2011, 82, 283-290.	5.0	14
90	The dynamics and pH-dependence of Ag43 adhesins' self-association probed by atomic force spectroscopy. Nanoscale, 2014, 6, 12665-12681.	5.6	14

#	Article	IF	CITATIONS
91	What do luminescent bacterial metal-sensors probe? Insights from confrontation between experiments and flux-based theory. Sensors and Actuators B: Chemical, 2018, 270, 482-491.	7.8	14
92	Morphology and Breaking of Latex Particle Deposits at a Cylindrical Collector in a Microfluidic Chamber. Environmental Science & amp; Technology, 2010, 44, 9413-9418.	10.0	13
93	Dynamic Modulation of Fimbrial Extension and FimH-Mannose Binding Force on Live Bacteria Under pH Changes: A Molecular Atomic Force Microscopy Analysis. Journal of Biomedical Nanotechnology, 2014, 10, 3361-3372.	1.1	13
94	Recent Progress and Perspectives in the Electrokinetic Characterization of Polyelectrolyte Films. Polymers, 2016, 8, 7.	4.5	13
95	Applicability of the Reaction Layer Principle to Nanoparticulate Metal Complexes at a Macroscopic Reactive (Bio)Interface: A Theoretical Study. Journal of Physical Chemistry C, 2017, 121, 19147-19161.	3.1	13
96	Remarkable reversal of electrostatic interaction forces on zwitterionic soft nanointerfaces in a monovalent aqueous electrolyte: an AFM study at the single nanoparticle level. Nanoscale, 2018, 10, 3181-3190.	5.6	13
97	Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Advances in Colloid and Interface Science, 2021, 290, 102400.	14.7	13
98	Faradaic double layer depolarization in electrokinetics: Onsager relations and substrate limitations. Journal of Colloid and Interface Science, 2007, 309, 350-359.	9.4	12
99	Kinetic and thermodynamic determinants of trace metal partitioning at biointerphases: the role of intracellular speciation dynamics. Physical Chemistry Chemical Physics, 2016, 18, 30415-30435.	2.8	12
100	Remarkable Structure and Elasticity Relaxation Dynamics of Poly(diallyldimethylammonium) Tj ETQq0 0 0 rgBT /0	Dverlock 1 3.1	0 Tf 50 382 1 12
101	The role of the heat shock protein Hsp12p in the dynamic response of <i>Saccharomyces cerevisiae</i> to the addition of Congo red. FEMS Yeast Research, 2009, 9, 391-399.	2.3	11
102	Speciation dynamics of metals in dispersion of nanoparticles with discrete distribution of charged binding sites. Physical Chemistry Chemical Physics, 2014, 16, 1999-2010.	2.8	11
103	Evaluation of Metal Biouptake from the Analysis of Bulk Metal Depletion Kinetics at Various Cell Concentrations: Theory and Application. Environmental Science & Technology, 2015, 49, 990-998.	10.0	11
104	Carbonate Disequilibrium in the External Boundary Layer of Freshwater Chrysophytes: Implications for Contaminant Uptake. Environmental Science & Technology, 2018, 52, 9403-9411.	10.0	11
105	On the use of electrokinetic phenomena of the second kind for probing electrode kinetic properties of modified electron-conducting surfaces. Physical Chemistry Chemical Physics, 2007, 9, 1713-1729.	2.8	10
106	Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization. Journal of Colloid and Interface Science, 2006, 300, 413-428.	9.4	9
107	Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. Colloids and Surfaces B: Biointerfaces, 2008, 64, 302-306.	5.0	9
108	Coupled metal partitioning dynamics and toxicodynamics at biointerfaces: a theory beyond the biotic ligand model framework. Physical Chemistry Chemical Physics, 2016, 18, 9453-9469.	2.8	9

Jérôme F L Duval

#	Article	IF	CITATIONS
109	Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces. Physical Chemistry Chemical Physics, 2017, 19, 29114-29124.	2.8	9
110	Decoding the Time-Dependent Response of Bioluminescent Metal-Detecting Whole-Cell Bacterial Sensors. ACS Sensors, 2019, 4, 1373-1383.	7.8	9
111	Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes. Physical Chemistry Chemical Physics, 2012, 14, 4491.	2.8	7
112	Structural effects of soft nanoparticulate ligands on trace metal complexation thermodynamics. Physical Chemistry Chemical Physics, 2016, 18, 31711-31724.	2.8	7
113	Deciphering the aggregation mechanism of bacteria (Shewanella oneidensis MR1) in the presence of polyethyleneimine: Effects of the exopolymeric superstructure and polymer molecular weight. Colloids and Surfaces B: Biointerfaces, 2016, 139, 285-293.	5.0	7
114	Poisson–Boltzmann Electrostatics and Ionic Partition Equilibration of Charged Nanoparticles in Aqueous Media. Journal of Physical Chemistry C, 2018, 122, 17328-17337.	3.1	7
115	Surface properties of bacteria sensitive and resistant to the class IIa carnobacteriocin Cbn BM1. Journal of Applied Microbiology, 2012, 112, 372-382.	3.1	6
116	Impact of metallic ions on electrohydrodynamics of soft colloidal polysaccharides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 16-21.	4.7	6
117	On the Infectivity of Bacteriophages in Polyelectrolyte Multilayer Films: Inhibition or Preservation of Their Bacteriolytic Activity?. ACS Applied Materials & Interfaces, 2018, 10, 33545-33555.	8.0	6
118	On the analysis of ionic surface conduction to unravel charging processes at macroscopic soft and hard solid–liquid interfaces. Current Opinion in Colloid and Interface Science, 2019, 44, 177-187.	7.4	6
119	Bimodal stringence-mediated response of metal-detecting luminescent whole cell bioreporters: Experimental evidence and quantitative theory. Sensors and Actuators B: Chemical, 2020, 309, 127751.	7.8	6
120	Quantitative insights into electrostatics and structure of polymer brushes from microslit electrokinetic experiments and advanced modelling of interfacial electrohydrodynamics. Current Opinion in Colloid and Interface Science, 2022, 59, 101590.	7.4	6
121	Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity. ACS Applied Bio Materials, 2021, 4, 2614-2627.	4.6	5
122	Surface Properties of Parabacteroides distasonis and Impacts of Stress-Induced Molecules on Its Surface Adhesion and Biofilm Formation Capacities. Microorganisms, 2021, 9, 1602.	3.6	5
123	Electrophoresis of Soft Colloids: Basic Principles and Applications. , 0, , 315-344.		5
124	Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions. Biosensors, 2022, 12, 327.	4.7	5
125	Random Computer Generation of 3D Molecular Structures: Theoretical and Statistical Analysis. Macromolecular Theory and Simulations, 2006, 15, 147-162.	1.4	4
126	Thermo-Regulated Adhesion of the Streptococcus thermophilus <i>Δrgg0182</i> Strain. Langmuir, 2013, 29, 4847-4856.	3.5	4

#	Article	IF	CITATIONS
127	The Intrinsic Stability of Metal Ion Complexes with Nanoparticulate Fulvic Acids. Environmental Science & Technology, 2018, 52, 11682-11690.	10.0	4
128	Coupling between electrokinetics and electrode kinetics by bipolar faradaic depolarisation processes in microfluidic channels. Advances in Colloid and Interface Science, 2020, 275, 102074.	14.7	4
129	On the strong connection between nanoscale adhesion of Yad fimbriae and macroscale attachment of Yad-decorated bacteria to glycosylated, hydrophobic and hydrophilic surfaces. Nanoscale, 2021, 13, 1257-1272.	5.6	4
130	Electrophoresis as a simple method to detect deleterious actions of engineered nanoparticles on living cells. Environmental Chemistry, 2020, 17, 39.	1.5	4
131	On the evaluation of the intrinsic stability of indium-nanoparticulate organic matter complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128859.	4.7	4
132	Absolute and Relative Positioning of Natural Organic Matter Acid–Base Potentiometric Titration Curves: Implications for the Evaluation of the Density of Charged Reactive Sites. Environmental Science & Technology, 2022, 56, 10494-10503.	10.0	4
133	Nature of the magnetic ground state in the A1C60 series. European Physical Journal Special Topics, 2000, 10, Pr3-205-Pr3-210.	0.2	3
134	Mixers. , 2008, , 323-373.		2
135	Interfaces against pollution 2014: From fundamental to applied environmental physical chemistry. Journal of Colloid and Interface Science, 2015, 446, 307.	9.4	2
136	Chemodynamics: The Graal of Herman P. van Leeuwen. Journal of Physical Chemistry A, 2012, 116, 6421-6421.	2.5	1
137	Ultra-slow diffusion of hexacyanoferrate anions in poly(diallyldimethyl ammonium) Tj ETQq1 1 0.784314 rgBT /Ov 2019, 539, 306-314.	verlock 10 9.4	Tf 50 347 To 1
138	Electrochemical activity of various types of aqueous In(III) species at a mercury electrode. Journal of Solid State Electrochemistry, 2020, 24, 2807-2818.	2.5	1
139	Analysis of Polymer Layers on Red Blood Cell Surfaces with Soft Particle Models. Kobunshi Ronbunshu, 2010, 67, 654-665.	0.2	0
140	Interfaces against Pollution: A`Rendez-Vous' between colloid physical chemistry and (bio) geoscience. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 435, 1.	4.7	0
141	Controlled assembly of heterogeneous aggregates of clay, iron hydr(oxydes) and polysaccharide: Effects of preparation conditions. Applied Clay Science, 2022, 216, 106340.	5.2	0