
Marianna Peroglio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5009099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diversity of intervertebral disc cells: phenotype and function. Journal of Anatomy, 2012, 221, 480-496.	0.9	237
2	Toughening of bio-ceramics scaffolds by polymer coating. Journal of the European Ceramic Society, 2007, 27, 2679-2685.	2.8	151
3	Tailoring Thermoreversible Hyaluronan Hydrogels by "Click―Chemistry and RAFT Polymerization for Cell and Drug Therapy. Biomacromolecules, 2010, 11, 1261-1272.	2.6	107
4	Injectable thermoreversible hyaluronan-based hydrogels for nucleus pulposus cell encapsulation. European Spine Journal, 2012, 21, 839-849.	1.0	98
5	Thermoreversible hyaluronan-based hydrogel supports inÂvitro and exÂvivo disc-like differentiation of human mesenchymal stem cells. Spine Journal, 2013, 13, 1627-1639.	0.6	93
6	Homing of Mesenchymal Stem Cells in Induced Degenerative Intervertebral Discs in a Whole Organ Culture System. Spine, 2012, 37, 1865-1873.	1.0	91
7	The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials, 2014, 35, 8144-8153.	5.7	78
8	Mechanical properties and cytocompatibility of poly(ε-caprolactone)-infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution. Acta Biomaterialia, 2010, 6, 4369-4379.	4.1	77
9	CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. , 2014, 27, 124-136.		75
10	Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus. Biomacromolecules, 2017, 18, 2360-2370.	2.6	53
11	Relevance of bioreactors and whole tissue cultures for the translation of new therapies to humans. Journal of Orthopaedic Research, 2018, 36, 10-21.	1.2	45
12	Biomimetic fibrin–hyaluronan hydrogels for nucleus pulposus regeneration. Regenerative Medicine, 2014, 9, 309-326.	0.8	44
13	The Transpedicular Approach As an Alternative Route for Intervertebral Disc Regeneration. Spine, 2013, 38, E319-E324.	1.0	43
14	Robocast zirconia-toughened alumina scaffolds: Processing, structural characterisation and interaction with human primary osteoblasts. Journal of the European Ceramic Society, 2018, 38, 845-853.	2.8	43
15	Platelet-rich plasma induces annulus fibrosus cell proliferation and matrix production. European Spine Journal, 2014, 23, 745-753.	1.0	42
16	Femtosecond laser multi-patterning of zirconia for screening of cell-surface interactions. Journal of the European Ceramic Society, 2018, 38, 939-948.	2.8	38
17	Mechanical loading of intervertebral disc modulates microglia proliferation, activation, and chemotaxis. Osteoarthritis and Cartilage, 2018, 26, 978-987.	0.6	37
18	CD146/MCAM distinguishes stem cell subpopulations with distinct migration and regenerative potential in degenerative intervertebral discs. Osteoarthritis and Cartilage, 2019, 27, 1094-1105.	0.6	37

MARIANNA PEROGLIO

#	Article	IF	CITATIONS
19	Hyaluronic acid-based interpenetrating network hydrogel as a cell carrier for nucleus pulposus repair. Carbohydrate Polymers, 2022, 277, 118828.	5.1	31
20	Intervertebral disc organ culture for the investigation of disc pathology and regeneration – benefits, limitations, and future directions of bioreactors. Connective Tissue Research, 2020, 61, 304-321.	1.1	30
21	Potential and Limitations of Intervertebral Disc Endogenous Repair. Current Stem Cell Research and Therapy, 2015, 10, 329-338.	0.6	30
22	Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-11± stabilisation. Journal of the European Ceramic Society, 2018, 38, 877-886.	2.8	29
23	Mesenchymal Stem Cell Homing Into Intervertebral Discs Enhances the Tie2-positive Progenitor Cell Population, Prevents Cell Death, and Induces a Proliferative Response. Spine, 2019, 44, 1613-1622.	1.0	27
24	Development of an ex vivo cavity model to study repair strategies in loaded intervertebral discs. European Spine Journal, 2016, 25, 2898-2908.	1.0	25
25	A Nucleotomy Model with Intact Annulus Fibrosus to Test Intervertebral Disc Regeneration Strategies. Tissue Engineering - Part C: Methods, 2015, 21, 1117-1124.	1.1	23
26	The influence of strontium release rate from bioactive phosphate glasses on osteogenic differentiation of human mesenchymal stem cells. Journal of the European Ceramic Society, 2018, 38, 887-897.	2.8	23
27	Multivalent dendrimers presenting spatially controlled clusters of binding epitopes in thermoresponsive hyaluronan hydrogels. Acta Biomaterialia, 2014, 10, 4340-4350.	4.1	22
28	A Hyaluronan and Platelet-Rich Plasma Hydrogel for Mesenchymal Stem Cell Delivery in the Intervertebral Disc: An Organ Culture Study. International Journal of Molecular Sciences, 2021, 22, 2963.	1.8	22
29	Isolation of highâ€quality RNA from intervertebral disc tissue via pronase predigestion and tissue pulverization. JOR Spine, 2018, 1, e1017.	1.5	21
30	The osteogenic differentiation of human osteoprogenitor cells on Anodic-Plasma-Chemical treated Ti6Al7Nb. Biomaterials, 2011, 32, 672-680.	5.7	18
31	Fibrin-Hyaluronic Acid Hydrogel (RegenoGel) with Fibroblast Growth Factor-18 for In Vitro 3D Culture of Human and Bovine Nucleus Pulposus Cells. International Journal of Molecular Sciences, 2019, 20, 5036.	1.8	18
32	Intervertebral disc response to stem cell treatment is conditioned by disc state and cell carrier: An exÂvivo study. Journal of Orthopaedic Translation, 2017, 9, 43-51.	1.9	16
33	Direct and Intervertebral DiscMediated Sensitization of Dorsal Root Ganglion Neurons by Hypoxia and Low pH. Neurospine, 2020, 17, 42-59.	1.1	16
34	Combined release of platelet-rich plasma and 3D-mesenchymal stem cell encapsulation in alginate hydrogels modified by the presence of silica. Journal of Materials Chemistry, 2011, 21, 4086.	6.7	15
35	Roughness gradients on zirconia for rapid screening of cellâ€surface interactions: Fabrication, characterization and application. Journal of Biomedical Materials Research - Part A, 2016, 104, 2502-2514.	2.1	15
36	Human primary osteoblast behaviour on microrough zirconia-toughened alumina and on selectively etched microrough zirconia-toughened alumina. Journal of the European Ceramic Society, 2018, 38, 927-937.	2.8	14

MARIANNA PEROGLIO

#	Article	IF	CITATIONS
37	Evaluation of a new press-fit in situ setting composite porous scaffold for cancellous bone repair: Towards a "surgeon-friendly―bone filler?. Acta Biomaterialia, 2010, 6, 3808-3812.	4.1	11
38	Evaluation of the in vitro cell-material interactions and in vivo osteo-integration of a spinal acrylic bone cement. European Spine Journal, 2012, 21, 800-809.	1.0	11
39	Calcium phosphate substrates with emulsion-derived roughness: Processing, characterisation and interaction with human mesenchymal stem cells. Journal of the European Ceramic Society, 2018, 38, 949-961.	2.8	11
40	In Vitro Model to Investigate Communication between Dorsal Root Ganglion and Spinal Cord Glia. International Journal of Molecular Sciences, 2021, 22, 9725.	1.8	10
41	Endogenous Cell Homing for Intervertebral Disk Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2015, 23, 264-266.	1.1	7
42	Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Acta Biomaterialia, 2021, 125, 322-332.	4.1	7
43	Hypoxic stress enhances extension and branching of dorsal root ganglion neuronal outgrowth. JOR Spine, 2020, 3, e1090.	1.5	5
44	Improvement of the Mechanical Properties of Calcium Phosphate Bone Substitutes by Polycaprolactone Infiltration. Key Engineering Materials, 2008, 361-363, 403-406.	0.4	3
45	A parametric study of conventional and high-speed microwave sintering of robocast porcelain. Open Ceramics, 2022, 9, 100246.	1.0	2
46	Composites organiques-inorganiques pour la substitution et la réparation osseuseÂ: concepts, premiers résultats et potentialités. MATEC Web of Conferences, 2013, 7, 04013.	0.1	0