Dávid Beke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500873/publications.pdf

Version: 2024-02-01

840776 794594 21 422 11 19 citations h-index g-index papers 21 21 21 500 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Photoluminescence spectrum of divacancy in porous and nanocrystalline cubic silicon carbide. Journal of Applied Physics, 2022, 131, .	2.5	8
2	Optimization of Chromium-Doped Zinc Gallate Nanocrystals for Strong Near-Infrared Emission by Annealing. ACS Applied Nano Materials, 2022, 5, 8950-8961.	5 . 0	5
3	Enhancement of X-ray-Excited Red Luminescence of Chromium-Doped Zinc Gallate via Ultrasmall Silicon Carbide Nanocrystals. Chemistry of Materials, 2021, 33, 2457-2465.	6.7	9
4	Silicon-Carbide (SiC) Nanocrystal Technology and Characterization and Its Applications in Memory Structures. Nanomaterials, 2020, 10, 2387.	4.1	8
5	Novel Method for Electroless Etching of 6H–SiC. Nanomaterials, 2020, 10, 538.	4.1	6
6	Room-Temperature Defect Qubits in Ultrasmall Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 1675-1681.	4.6	25
7	Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon Carbide Nanoparticles. Nanomaterials, 2020, 10, 573.	4.1	7
8	Identification of the binding site between bovine serum albumin and ultrasmall SiC fluorescent biomarkers. Physical Chemistry Chemical Physics, 2018, 20, 13419-13429.	2.8	16
9	Direct Observation of Transition from Solid-State to Molecular-Like Optical Properties in Ultrasmall Silicon Carbide Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 26713-26721.	3.1	7
10	Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures. Scientific Reports, 2017, 7, 10599.	3.3	13
11	Surface-Mediated Energy Transfer and Subsequent Photocatalytic Behavior in Silicon Carbide Colloid Solutions. Langmuir, 2017, 33, 14263-14268.	3.5	5
12	Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta, 2016, 147, 271-275.	5 . 5	17
13	Identification of Luminescence Centers in Molecular-Sized Silicon Carbide Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 685-691.	3.1	31
14	Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals. Nanoscale, 2015, 7, 10982-10988.	5 . 6	46
15	Room Temperature Quantum Emission from Cubic Silicon Carbide Nanoparticles. ACS Nano, 2014, 8, 7938-7947.	14.6	89
16	Chemical Transformation of Carboxyl Groups on the Surface of Silicon Carbide Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 19995-20001.	3.1	16
17	Silicon carbide quantum dots for bioimaging. Journal of Materials Research, 2013, 28, 205-209.	2.6	40
18	Preparation of small silicon carbide quantum dots by wet chemical etching. Journal of Materials Research, 2013, 28, 44-49.	2.6	41

DÃ:VID BEKE

#	Article	IF	CITATIONS
19	Preparation of Small Silicon Carbide Quantum Dots by Wet Chemical Etching. Materials Research Society Symposia Proceedings, 2012, 1468, 25.	0.1	O
20	Characterization of luminescent silicon carbide nanocrystals prepared by reactive bonding and subsequent wet chemical etching. Applied Physics Letters, 2011, 99, .	3.3	33
21	Selective Growth of Nanocrystalline 3C-SiC Thin Films on Si. , 2010, , .		O