Heà di Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5008556/publications.pdf

Version: 2024-02-01

		1040018	1281846
12	729	9	11
papers	citations	h-index	g-index
16	16	16	868
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nucleosomes and DNA methylation shape meiotic DSB frequency in <i>Arabidopsis thaliana</i> transposons and gene regulatory regions. Genome Research, 2018, 28, 532-546.	5.5	190
2	Epigenetic activation of meiotic recombination near <i>Arabidopsis thaliana</i> centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Research, 2018, 28, 519-531.	5.5	138
3	Massive crossover elevation via combination of <i>HEI10</i> and <i>recq4a recq4b</i> during <i>Arabidopsis</i> meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2437-2442.	7.1	107
4	Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genetics, 2016, 12, e1006179.	3.5	94
5	Roles of XRCC2, RAD51B and RAD51D in RAD51-Independent SSA Recombination. PLoS Genetics, 2013, 9, e1003971.	3.5	59
6	Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nature Communications, 2021, 12, 803.	12.8	49
7	Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genetics, 2018, 14, e1007843.	3.5	30
8	Natural variation identifies SNI1, the SMC5/6 component, as a modifier of meiotic crossover in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
9	The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis. Plant Cell, 2016, 28, 74-86.	6.6	15
10	Development of Deletion Lines for Chromosome 3D of Bread Wheat. Frontiers in Plant Science, 2020, 10, 1756.	3.6	10
11	Quantification and Sequencing of Crossover Recombinant Molecules from Arabidopsis Pollen DNA. Methods in Molecular Biology, 2017, 1551, 23-57.	0.9	10
12	Generation of Deletion Lines in Allohexaploid Bread Wheat. Methods in Molecular Biology, 2022, 2484, 183-199.	0.9	0