
Elizabeth J Screaton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5008416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	189
2	Origin and evolution of a splay fault in the Nankai accretionary wedge. Nature Geoscience, 2009, 2, 648-652.	12.9	177
3	Seismic slip propagation to the updip end of plate boundary subduction interface faults: Vitrinite reflectance geothermometry on Integrated Ocean Drilling Program NanTro SEIZE cores. Geology, 2011, 39, 395-398.	4.4	147
4	Permeabilities, fluid pressures, and flow rates in the Barbados Ridge Complex. Journal of Geophysical Research, 1990, 95, 8997-9007.	3.3	143
5	Porosity loss within the underthrust sediments of the Nankai accretionary complex: Implications for overpressures. Geology, 2002, 30, 19.	4.4	122
6	Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. Journal of Hydrology, 2010, 386, 55-66.	5.4	108
7	Slumping and mass transport deposition in the Nankai fore arc: Evidence from IODP drilling and 3â€Đ reflection seismic data. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	103
8	Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer. Journal of Hydrology, 2009, 376, 443-455.	5.4	101
9	Slow slip source characterized by lithological and geometric heterogeneity. Science Advances, 2020, 6, eaay3314.	10.3	95
10	Spatial and temporal evolution of the megasplay fault in the Nankai Trough. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	88
11	Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: Results from IODP Expedition 316 Sites C0006 and C0007. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	65
12	Permeability–porosity relationships of subduction zone sediments. Marine Geology, 2011, 279, 19-36.	2.1	65
13	NanTroSEIZE Stage 1 expeditions: introduction and synthesis of key results. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	60
14	Anisotropy of electrical conductivity record of initial strain at the toe of the Nankai accretionary wedge. Journal of Geophysical Research, 2003, 108, .	3.3	49
15	Conduit enlargement in an eogenetic karst aquifer. Journal of Hydrology, 2010, 393, 143-155.	5.4	49
16	Conduit Properties and Karstification in the Unconfined Floridan Aquifer. Ground Water, 2004, 42, 338-346.	1.3	48
17	River reversals into karst springs: A model for cave enlargement in eogenetic karst aquifers. Bulletin of the Geological Society of America, 2011, 123, 457-467.	3.3	42
18	Characterization of excess pore pressures at the toe of the Nankai accretionary complex, Ocean Drilling Program sites 1173, 1174, and 808: Results of one-dimensional modeling. Journal of Geophysical Research, 2006, 111, .	3.3	39

ELIZABETH J SCREATON

#	Article	IF	CITATIONS
19	Time variant cross correlation to assess residence time of water and implication for hydraulics of a sinkâ€rise karst system. Water Resources Research, 2011, 47, .	4.2	38
20	Evolution of sediment permeability during burial and subduction. Geofluids, 2015, 15, 84-105.	0.7	38
21	Insights Into Permafrost and Seasonal Active‣ayer Dynamics From Ambient Seismic Noise Monitoring. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1798-1816.	2.8	37
22	Fluid flow at the toe of convergent margins: interpretation of sharp pore-water geochemical gradients. Earth and Planetary Science Letters, 2003, 213, 261-270.	4.4	35
23	Hydrogeologic properties of a thrust fault within the Oregon Accretionary Prism. Journal of Geophysical Research, 1995, 100, 20025-20035.	3.3	34
24	Improved moving window crossâ€spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophysical Research Letters, 2017, 44, 4018-4026.	4.0	34
25	Permeability of a decollement zone: Results from a two-well experiment in the Barbados accretionary complex. Journal of Geophysical Research, 2000, 105, 21403-21410.	3.3	32
26	Barbados Ridge hydrogeologic tests: Implications for fluid migration along an active decollement. Geology, 1997, 25, 239.	4.4	31
27	Fluid expulsion and overpressure development during initial subduction at the Costa Rica convergent margin. Earth and Planetary Science Letters, 2005, 233, 361-374.	4.4	31
28	Bank storage in karst aquifers: The impact of temporary intrusion of river water on carbonate dissolution and trace metal mobility. Chemical Geology, 2014, 385, 56-69.	3.3	30
29	Relative importance and chemical effects of diffuse and focused recharge in an eogenetic karst aquifer: an example from the unconfined upper Floridan aquifer, USA. Hydrogeology Journal, 2009, 17, 1687-1698.	2.1	27
30	Seismogenic zone temperatures and heat-flow anomalies in the To-nankai margin segment based on temperature data from IODP expedition 333 and thermal model. Earth and Planetary Science Letters, 2012, 349-350, 171-185.	4.4	26
31	Coupled fluid flow and deformation modeling of the frontal thrust region of the Kumano Basin transect, Japan: Implications for fluid pressures and decollement downstepping. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	22
32	Influence of partial confinement and Holocene river formation on groundwater flow and dissolution in the Florida carbonate platform. Hydrological Processes, 2014, 28, 705-717.	2.6	22
33	Modeling seismically induced deformation and fluid flow in the Nankai subduction zone. Geophysical Research Letters, 2005, 32, .	4.0	19
34	Sedimentation Controls on Methaneâ€Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Margin. Geochemistry, Geophysics, Geosystems, 2019, 20, 4906-4921.	2.5	17
35	Three-dimensional numerical simulation of fluid flow and heat transport within the Barbados Ridge accretionary complex. Journal of Geophysical Research, 2003, 108, .	3.3	15
36	Interactions of diffuse and focused allogenic recharge in an eogenetic karst aquifer (Florida, USA). Hydrogeology Journal, 2012, 20, 767-781.	2.1	14

#	Article	IF	CITATIONS
37	Dissolution in a variably confined carbonate platform: effects of allogenic runoff, hydraulic damming of groundwater inputs, and surface–groundwater exchange at the basin scale. Earth Surface Processes and Landforms, 2013, 38, 1700-1713.	2.5	13
38	Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling. Hydrogeology Journal, 2015, 23, 305-317.	2.1	13
39	Monitoring well responses to karst conduit head fluctuations: Implications for fluid exchange and matrix transmissivity in the Floridan aquifer. , 2006, , .		13

40 æμ·åºŠæ°´æ−‡åœ°èŤçš"最æ−°èį›å±•: 集ä¸åœ¨åŸºå⁰•æ2‰ç§¯ç‰©ç›,互作ç"¨ã€äį¯å†²å,¦åŠå≸陆æ−œåţ. Hŷdrogeology Journal,

41	Data Report: Permeabilities of Eastern Equatorial Pacific and Peru Margin Sediments. , 0, , .		10
42	Deep subsurface carbon cycling in the <scp>N</scp> ankai <scp>T</scp> rough (Japan)—Evidence of tectonically induced stimulation of a deep microbial biosphere. Geochemistry, Geophysics, Geosystems, 2015, 16, 3257-3270.	2.5	9
43	Data Report: Permeabilities of Nankai Accretionary Prism Sediments. , 0, , .		9
44	Hydrodynamic response of subduction zones to seismic activity: A case study for the Costa Rica margin. Tectonophysics, 2006, 426, 167-187.	2.2	8
45	Investigating the Basal Shear Zone of the Submarine Tuaheni Landslide Complex, New Zealand: A Coreâ€Logâ€Seismic Integration Study. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	8
46	Excess pore pressures within subducting sediments: Does the proportion of accreted versus subducted sediments matter?. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	7
47	The impact of megasplay faulting and permeability contrasts on Nankai Trough subduction zone pore pressures. Geophysical Research Letters, 2012, 39, .	4.0	7
48	Interplay of Subduction Tectonics, Sedimentation, and Carbon Cycling. Geochemistry, Geophysics, Geosystems, 2019, 20, 4939-4955.	2.5	7
49	Data Report: Permeabilities of Costa Rica Subduction Zone Sediments. , 0, , .		7
50	Subduction Zones. Developments in Marine Geology, 2014, , 599-640.	0.4	6
51	A one-dimensional analytically based approach for studying poroplastic and viscous consolidation: Application to Woodlark Basin, Papua New Guinea. Journal of Geophysical Research, 2003, 108, .	3.3	5
52	Hydrostratigraphy characterization of the Floridan aquifer system using ambient seismic noise. Geophysical Journal International, 2017, 209, 876-889.	2.4	5
53	Deformation Structures From Splay and Décollement Faults in the Nankai Accretionary Prism, SW Japan(IODP NanTroSEIZE Expedition 316): Evidence for Slow and Rapid Slip in Fault Rocks. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008786.	2.5	5
54	Effect of Mississippi River discharge and local hydrological variables on salinity of nearby estuaries using a machine learning algorithm. Estuarine, Coastal and Shelf Science, 2021, 263, 107628.	2.1	5

#	Article	IF	CITATIONS
55	The impact of rapid sediment accumulation on pore pressure development and dehydration reactions during shallow subduction in the <scp>G</scp> ulf of <scp>A</scp> laska. Geochemistry, Geophysics, Geosystems, 2017, 18, 189-203.	2.5	4
56	A Simple Relation to Constrain Groundwater Models Using Surface Deformation. Ground Water, 2022, 60, 410-417.	1.3	2
57	Normal faulting and mass movement during ridge subduction inferred from porosity transition and zeolitization in the <scp>C</scp> osta <scp>R</scp> ica subduction zone. Geochemistry, Geophysics, Geosystems, 2017, 18, 2601-2616.	2.5	1
58	Reply to Comments by N. Sultan on "Sedimentation Controls on Methaneâ€Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Marginâ€: Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009005.	2.5	1
59	Data report: permeability and grain size of sediments, IODP Expeditions 372 and 375. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	1