Tito Trindade

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5008327/tito-trindade-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

307	9,940	50	87
papers	citations	h-index	g-index
331	11,003	5.3	6.33
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
307	Corrole-gold nanoparticles: Synthesis, ground and excited state solvation. <i>Dyes and Pigments</i> , 2022 , 11	01408	
306	Carbamazepine polymorphism: A re-visitation using Raman imaging <i>International Journal of Pharmaceutics</i> , 2022 , 617, 121632	6.5	О
305	Metal-dendrimer hybrid nanomaterials for sensing applications. <i>Coordination Chemistry Reviews</i> , 2022 , 460, 214483	23.2	2
304	Quantum dot phthalocyanine non-covalent assemblies 🗗 review. <i>Dyes and Pigments</i> , 2021 , 109931	4.6	1
303	Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates <i>Journal of Colloid and Interface Science</i> , 2021 , 612, 342-354	9.3	1
302	Complex cellular environments imaged by SERS nanoprobes using sugars as an all-in-one vector. Journal of Materials Chemistry B, 2021 , 9, 9285-9294	7.3	0
301	Dissolution of Ag Nanoparticles in Agricultural Soils and Effects on Soil Exoenzyme Activities. <i>Environments - MDPI</i> , 2021 , 8, 22	3.2	2
300	Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. <i>ACS Applied Nano Materials</i> , 2021 , 4, 4484-4495	5.6	6
299	On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105189	6.8	10
298	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. <i>Materials Advances</i> , 2021 , 2, 1613-1620	3.3	0
297	Water softening using graphene oxide/biopolymer hybrid nanomaterials. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105045	6.8	2
296	Enhanced Removal of Non-Steroidal Inflammatory Drugs from Water by Quaternary Chitosan-Based Magnetic Nanosorbents. <i>Coatings</i> , 2021 , 11, 964	2.9	5
295	Graphene Oxide and Graphene Quantum Dots as Delivery Systems of Cationic Porphyrins: Photo-Antiproliferative Activity Evaluation towards T24 Human Bladder Cancer Cells. <i>Pharmaceutics</i> , 2021 , 13,	6.4	2
294	Colloidal dendritic nanostructures of gold and silver for SERS analysis of water pollutants. <i>Journal of Molecular Liquids</i> , 2021 , 337, 116608	6	8
293	The Interactions of HTMPyP, Analogues and Its Metal Complexes with DNA G-Quadruplexes-An Overview. <i>Biomolecules</i> , 2021 , 11,	5.9	1
292	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 643-668	13.3	13
291	Improved ionic-liquid-functionalized macroporous supports able to purify nucleic acids in one step. Materials Today Bio, 2020, 8, 100086	9.9	1

(2020-2020)

290	Surface-Enhanced Raman Scattering due to a Synergistic Effect on ZnS and Graphene Oxide. Journal of Physical Chemistry C, 2020 , 124, 12742-12751	3.8	6	
289	An integrated approach to assess the sublethal effects of colloidal gold nanorods in tadpoles of Xenopus laevis. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123237	12.8	3	
288	Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species-A Screening Study. <i>Nanomaterials</i> , 2020 , 10,	5.4	7	
287	Recovery of immunoglobulin G from rabbit serum using Etarrageenan-modified hybrid magnetic nanoparticles. <i>International Journal of Biological Macromolecules</i> , 2020 , 150, 914-921	7.9	5	
286	Effects of gold nanoparticles in gilthead seabream-A proteomic approach. <i>Aquatic Toxicology</i> , 2020 , 221, 105445	5.1	4	
285	Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions. <i>Materials</i> , 2020 , 13,	3.5	1	
284	Composites of Biopolymers and ZnO NPs for Controlled Release of Zinc in Agricultural Soils and Timed Delivery for Maize. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2134-2148	5.6	17	
283	Magnetic Driven Nanocarriers for pH-Responsive Doxorubicin Release in Cancer Therapy. <i>Molecules</i> , 2020 , 25,	4.8	16	
282	Biological effects and bioaccumulation of gold in gilthead seabream (Sparus aurata) - Nano versus ionic form. <i>Science of the Total Environment</i> , 2020 , 716, 137026	10.2	3	
281	Can water remediated by manganese spinel ferrite nanoparticles be safe for marine bivalves?. <i>Science of the Total Environment</i> , 2020 , 723, 137798	10.2	8	
280	Dendrimer-Based Gold Nanostructures for SERS Detection of Pesticides in Water. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1153-1162	2.3	3	
279	Effects of single and combined exposures of gold (nano versus ionic form) and gemfibrozil in a liver organ culture of Sparus aurata. <i>Marine Pollution Bulletin</i> , 2020 , 160, 111665	6.7	2	
278	Biofunctional Polymer Coated Au Nanoparticles Prepared via RAFT-Assisted Encapsulating Emulsion Polymerization and Click Chemistry. <i>Polymers</i> , 2020 , 12,	4.5	2	
277	Functionalization of Graphene Oxide with Porphyrins: Synthetic Routes and Biological Applications. <i>ChemPlusChem</i> , 2020 , 85, 1857-1880	2.8	14	
276	Recent advances on magnetic biosorbents and their applications for water treatment. <i>Environmental Chemistry Letters</i> , 2020 , 18, 151-164	13.3	21	
275	Multiorgan histopathological changes in the juvenile seabream Sparus aurata as a biomarker for zinc oxide particles toxicity. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 30907-30917	5.1	8	
274	Supported ionic liquids as efficient materials to remove non-steroidal anti-inflammatory drugs from aqueous media. <i>Chemical Engineering Journal</i> , 2020 , 381, 122616	14.7	26	
273	Spinel-type ferrite nanoparticles for removal of arsenic(V) from water. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 22523-22534	5.1	3	

272	Coupling gold nanoparticles to Dye-Sensitized Solar Cells for an increased efficiency. <i>Electrochimica Acta</i> , 2019 , 300, 102-112	6.7	9
271	Trimethyl Chitosan/Siloxane-Hybrid Coated FeO Nanoparticles for the Uptake of Sulfamethoxazole from Water. <i>Molecules</i> , 2019 , 24,	4.8	28
270	Recovery of Rare Earth Elements by Carbon-Based Nanomaterials-A Review. <i>Nanomaterials</i> , 2019 , 9,	5.4	46
269	Chromium removal from contaminated waters using nanomaterials 🗗 review. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 118, 277-291	14.6	63
268	Effects of long-term exposure to colloidal gold nanorods on freshwater microalgae. <i>Science of the Total Environment</i> , 2019 , 682, 70-79	10.2	3
267	Impact of critical micelle concentration of macroRAFT agents on the encapsulation of colloidal Au nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2019 , 545, 251-258	9.3	2
266	The controlled synthesis of complex hollow nanostructures and prospective applications. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 2018067	7 ^{2.4}	19
265	Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis. <i>Environmental Research</i> , 2019 , 175, 200-212	7.9	23
264	Magnetic nanosorbents with siliceous hybrid shells of alginic acid and carrageenan for removal of ciprofloxacin. <i>International Journal of Biological Macromolecules</i> , 2019 , 139, 827-841	7.9	15
263	Can contaminated waters or wastewater be alternative sources for technology-critical elements? The case of removal and recovery of lanthanides. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120845	12.8	10
262	Gold loaded textile fibres as substrates for SERS detection. <i>Journal of Molecular Structure</i> , 2019 , 1185, 333-340	3.4	12
261	An integrated approach for trace detection of pollutants in water using polyelectrolyte functionalized magneto-plasmonic nanosorbents. <i>Scientific Reports</i> , 2019 , 9, 19647	4.9	4
260	Magnetic quaternary chitosan hybrid nanoparticles for the efficient uptake of diclofenac from water. <i>Carbohydrate Polymers</i> , 2019 , 203, 35-44	10.3	55
259	Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. <i>Chemosphere</i> , 2019 , 220, 11-19	8.4	14
258	Reliable quantification of mercury in natural waters using surface modified magnetite nanoparticles. <i>Chemosphere</i> , 2019 , 220, 565-573	8.4	4
257	Raman and Fluorescence Imaging of Polyoxometalate Composite Agarose Films. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 477-481	2.3	1
256	Effects and bioaccumulation of gold nanoparticles in the gilthead seabream (Sparus aurata) - Single and combined exposures with gemfibrozil. <i>Chemosphere</i> , 2019 , 215, 248-260	8.4	14
255	High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO, and Cu salt aged): transcriptomics in Enchytraeus crypticus. <i>Nanotoxicology</i> , 2018 , 12, 325-340	5.3	22

(2017-2018)

254	Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. <i>ACS Omega</i> , 2018 , 3, 4331-4341	3.9	17
253	A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. <i>Talanta</i> , 2018 , 182, 558-566	6.2	37
252	Can non-invasive methods be used to assess effects of nanoparticles in fish?. <i>Ecological Indicators</i> , 2018 , 95, 1118-1127	5.8	10
251	Surface Engineered Magnetic Biosorbents for Water Treatment. <i>Environmental Chemistry for A Sustainable World</i> , 2018 , 301-342	0.8	6
250	Structure and photoactivity for hydrogen production of CdS nanorods modified with In, Ga, Ag-In and Ag-Ga and prepared by solvothermal method. <i>Materials Today Energy</i> , 2018 , 9, 345-358	7	8
249	Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3440-3440	2.3	O
248	Polymer@gold Nanoparticles Prepared via RAFT Polymerization for Opto-Biodetection. <i>Polymers</i> , 2018 , 10,	4.5	18
247	Ultra sensitive quantification of Hg2+ sorption by functionalized nanoparticles using radioactive tracker spectroscopy. <i>Microchemical Journal</i> , 2018 , 138, 418-423	4.8	6
246	Magnetite©orrole Hybrid Nanoparticles. <i>Magnetochemistry</i> , 2018 , 4, 37	3.1	1
245	Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline. <i>Nanomaterials</i> , 2018 , 9,	5.4	16
244	Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. <i>Nanomaterials</i> , 2018 , 8,	5.4	7
243	Hybrids Based on Graphene Oxide and Porphyrin as Tools for Detection and Stabilization of DNA G-Quadruplexes. <i>ACS Omega</i> , 2018 , 3, 11184-11191	3.9	21
242	Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3443-3461	2.3	20
241	Parametric analysis of the growth of colloidal ZnO nanoparticles synthesized in alcoholic medium. Journal of Nanoparticle Research, 2017 , 19, 1	2.3	1
240	Highly Efficient Removal of Dye from Water Using Magnetic Carrageenan/Silica Hybrid Nano-adsorbents. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1	2.6	36
239	Raman imaging studies on the adsorption of methylene blue species onto silver modified linen fibers. <i>Journal of Raman Spectroscopy</i> , 2017 , 48, 795-802	2.3	12
238	Chitosan-silica hybrid nanosorbents for oil removal from water. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 532, 305-313	5.1	42
237	Tailoring gold and silver colloidal bimetallic nanoalloys towards SERS detection of rhodamine 6G. <i>RSC Advances</i> , 2017 , 7, 15944-15951	3.7	16

236	Luminescent Carrageenan Hydrogels Containing Lanthanopolyoxometalates. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4976-4981	2.3	5
235	A General Route for Growing Metal Sulfides onto Graphene Oxide and Exfoliated Graphite Oxide. <i>Nanomaterials</i> , 2017 , 7,	5.4	11
234	Cytotoxicity and oxidative stress responses of silica-coated iron oxide nanoparticles in CHSE-214 cells. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 2055-2064	5.1	14
233	A Comparative Study of Chemical Routes for Coating Gold Nanoparticles via Controlled RAFT Emulsion Polymerization. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600202	3.1	11
232	SERS Detection of Penicillin G Using Magnetite Decorated with Gold Nanoparticles. <i>Magnetochemistry</i> , 2017 , 3, 32	3.1	10
231	Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water. <i>Nanomaterials</i> , 2017 , 7,	5.4	44
230	Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 8283-302	5.7	15
229	Mercury in river, estuarine and seawaters - Is it possible to decrease realist environmental concentrations in order to achieve environmental quality standards?. <i>Water Research</i> , 2016 , 106, 439-44	4 9 ^{2.5}	19
228	Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. <i>Chemical Engineering Journal</i> , 2016 , 302, 560-569	14.7	35
227	Phagocytic cell responses to silica-coated dithiocarbamate-functionalized iron oxide nanoparticles and mercury co-exposures in Anguilla anguilla L. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 12272-86	5.1	2
226	The role of surface functionalization of silica nanoparticles for bioimaging. <i>Journal of Innovative Optical Health Sciences</i> , 2016 , 09, 1630005	1.2	21
225	Fluorescent Bioactive Corrole Grafted-Chitosan Films. <i>Biomacromolecules</i> , 2016 , 17, 1395-403	6.9	42
224	A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 75, 129-140	14.6	58
223	Targeting Cancer Cells with Photoactive Silica Nanoparticles. <i>Current Pharmaceutical Design</i> , 2016 , 22, 6021-6038	3.3	6
222	SERS and Raman imaging as a new tool to monitor dyeing on textile fibres. <i>Journal of Raman Spectroscopy</i> , 2016 , 47, 1239-1246	2.3	12
221	Uptake of Europium(III) from Water using Magnetite Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 150-157	3.1	14
220	Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. <i>Science of the Total Environment</i> , 2016 , 557-558, 712-21	10.2	29
219	An ionic liquid route to prepare copper sulphide nanocrystals aiming at photocatalytic applications. <i>RSC Advances</i> , 2016 , 6, 34521-34528	3.7	22

(2015-2016)

218	Assessment of gold nanoparticle effects in a marine teleost (Sparus aurata) using molecular and biochemical biomarkers. <i>Aquatic Toxicology</i> , 2016 , 177, 125-35	5.1	40
217	N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2016 , 193, 67-74	21.8	218
216	Effects of emerging contaminants on neurotransmission and biotransformation in marine organisms - An in vitro approach. <i>Marine Pollution Bulletin</i> , 2016 , 106, 236-44	6.7	23
215	Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2016 , 475, 96-103	9.3	10
214	Silver-gelatine bionanocomposites for qualitative detection of a pesticide by SERS. <i>Analyst, The</i> , 2015 , 140, 1693-701	5	9
213	Biotinylation of optically responsive gold/polyelectrolyte nanostructures. <i>Gold Bulletin</i> , 2015 , 48, 3-11	1.6	7
212	Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles. <i>Chemosphere</i> , 2015 , 135, 304-	1 ⁸ .4	22
211	Bionanocomposites for Magnetic Removal of Water Pollutants. <i>Advanced Structured Materials</i> , 2015 , 279-310	0.6	5
2 10	Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	18
209	Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2015 , 50, 996-1010	2.3	5
208	Soil-pore water distribution of silver and gold engineered nanoparticles in undisturbed soils under unsaturated conditions. <i>Chemosphere</i> , 2015 , 136, 86-94	8.4	10
207	Hybrid nanostructures for SERS: materials development and chemical detection. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 21046-71	3.6	123
206	A green method for the preparation of fluorescent hybrid structures of gold and corrole. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	2
205	Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.). <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18574-89	5.1	5
204	CarrageenanBilica Hybrid Nanoparticles Prepared by a Non-Emulsion Method. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4588-4594	2.3	23
203	Multiple Emulsion Templating of Hybrid Ag/SiO2 Capsules for Antibacterial Applications. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 561-566	3.1	9
202	Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposuresa paradox depicted in fish under in vitro conditions. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 3687-96	5.1	12
201	Behavior of colloidal gold nanoparticles in different ionic strength media. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	40

200	Nanobioinorganic Chemistry: Converging Inorganic Chemistry and Biology at the Nanoscale. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4447-4449	2.3	1
199	Lipid peroxidation and its control in Anguilla anguilla hepatocytes under silica-coated iron oxide nanoparticles (with or without mercury) exposure. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 9617-25	5.1	4
198	SERS studies of DNA nucleobases using new silver poly(methyl methacrylate) nanocomposites as analytical platforms. <i>Journal of Raman Spectroscopy</i> , 2015 , 46, 47-53	2.3	16
197	Ferromagnetic sorbents based on nickel nanowires for efficient uptake of mercury from water. <i>ACS Applied Materials & Discrete Applied & D</i>	9.5	28
196	Cationic release behaviour of antimicrobial cellulose/silver nanocomposites. <i>Cellulose</i> , 2014 , 21, 3551-3	35 <u>6</u> 9	9
195	Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.). <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7746-56	5.1	12
194	Raman Signal Enhancement Dependence on the Gel Strength of Ag/Hydrogels Used as SERS Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10384-10392	3.8	18
193	Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2014 , 162, 7-14	3.2	17
192	Encapsulation of essential oils in SiO2 microcapsules and release behaviour of volatile compounds. Journal of Microencapsulation, 2014 , 31, 627-35	3.4	39
191	Decoration of Carbon Nanostructures with Metal Sulfides by Sonolysis of Single-Molecule Precursors. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3184-3190	2.3	7
190	The role of operational parameters on the uptake of mercury by dithiocarbamate functionalized particles. <i>Chemical Engineering Journal</i> , 2014 , 254, 559-570	14.7	16
189	Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. <i>Colloid and Polymer Science</i> , 2014 , 292, 33-50	2.4	44
188	Photothermally enhanced drug release by Earrageenan hydrogels reinforced with multi-walled carbon nanotubes. <i>RSC Advances</i> , 2013 , 3, 10828	3.7	44
187	Magnetically responsive dry fluids. <i>Nanoscale</i> , 2013 , 5, 7229-33	7.7	7
186	Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels. <i>Gold Bulletin</i> , 2013 , 46, 25-33	1.6	33
185	Core-shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 5963-74	5.1	19
184	Defining and Using Very Small Crystals 2013 , 343-369		3
183	ECarrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. <i>Carbohydrate Polymers</i> , 2013 , 91, 100-9	10.3	71

(2013-2013)

182	Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems. <i>Journal of Environmental Management</i> , 2013 , 128, 226-32	7.9	17
181	Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 103, 143-8	6	86
180	Resizing of Colloidal Gold Nanorods and Morphological Probing by SERS. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20343-20350	3.8	12
179	Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis. <i>Journal of Colloid and Interface Science</i> , 2013 , 410, 21-6	9.3	20
178	Chapter 9:Nano dimensional ZnO: new chemical insights from an old material. <i>SPR Nanoscience</i> , 2013 , 255-285	3	2
177	Fluorescence biolabeling using methylated silica nanoparticles containing a lanthanide complex. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5429-5435	7-3	15
176	Effect of colloidal silver and gold nanoparticles on the thermal behavior of poly(t-butyl acrylate) composites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 436, 231-236	5.1	10
175	Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates. <i>Journal of Chromatography A</i> , 2013 , 1299, 25-32	4.5	23
174	Unusual dye adsorption behavior of Earrageenan coated superparamagnetic nanoparticles. <i>Chemical Engineering Journal</i> , 2013 , 229, 276-284	14.7	51
173	Corrole-silica hybrid particles: synthesis and effects on singlet oxygen generation. <i>RSC Advances</i> , 2013 , 3, 274-280	3.7	28
172	Luminescent Transparent Composite Films Based on Lanthanopolyoxometalates and Filmogenic Polysaccharides. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 1890-1896	2.3	13
171	Towards the understanding of the intentionally induced yellow luminescence in GaN nanowires. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2013 , 10, 667-672		8
170	Composite blends of gold nanorods and poly(t-butylacrylate) beads as new substrates for SERS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013 , 113, 100-6	4.4	13
169	Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 417, 111-119	5.1	112
168	SERS study on adenine using a Ag/poly(t-butylacrylate) nanocomposite. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2013 , 101, 36-9	4.4	20
167	Cellulose/iron oxide hybrids as multifunctional pigments in thermoplastic starch based materials. <i>Cellulose</i> , 2013 , 20, 861-871	5.5	6
166	Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8134	13	64
165	Electrostatic mechanism of strong enhancement of light emitted by semiconductor quantum wells. <i>Physical Review B</i> , 2013 , 87,	3.3	10

164	Antibacterial activity of nanocomposites of copper and cellulose. <i>BioMed Research International</i> , 2013 , 2013, 280512	3	80
163	Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles. <i>Materials</i> , 2013 , 6, 3213-3225	3.5	22
162	Magnetic hydrogel nanocomposites and composite nanoparticlesa review of recent patented works. <i>Recent Patents on Nanotechnology</i> , 2013 , 7, 153-66	1.2	20
161	Growth and Chemical Stability of Copper Nanostructures on Cellulosic Fibers. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 5043-5049	2.3	34
160	Release behavior of trans,trans-farnesol entrapped in amorphous silica capsules. <i>Results in Pharma Sciences</i> , 2012 , 2, 52-6		10
159	Os nanomateriais e a descoberta de novos mundos na bancada do quínico. <i>Química Nova</i> , 2012 , 35, 14:	34 <u>11</u> 446	5 7
158	Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. <i>Cellulose</i> , 2012 , 19, 1425-1436	5.5	150
157	Impact of magnetic nanofillers in the swelling and release properties of Earrageenan hydrogel nanocomposites. <i>Carbohydrate Polymers</i> , 2012 , 87, 328-335	10.3	61
156	Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. <i>Carbohydrate Research</i> , 2012 , 348, 77-83	2.9	123
155	Synthesis of nanocrystalline ZnS using biologically generated sulfide. <i>Hydrometallurgy</i> , 2012 , 117-118, 57-63	4	26
154	Composites of Cellulose and Metal Nanoparticles 2012,		27
153	Eco-friendly hybrid pigments made of cellulose and iron oxides. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6817-21	1.3	4
152	A single-source route for the synthesis of metal oxide nanoparticles using vegetable oil solvents. Journal of Nanoscience and Nanotechnology, 2012 , 12, 8963-8	1.3	5
151	Swelling and Release Properties of Functional Earrageenan Hydrogel Nanocomposites. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1403, 164		3
150	Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. <i>Green Chemistry</i> , 2011 , 13, 340	10	105
149	Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. <i>Water Research</i> , 2011 , 45, 5773-84	12.5	81
148	Neutron diffraction and magnetism of CoO antiferromagnetic nanoparticles. <i>Journal of Physics:</i> Conference Series, 2011 , 325, 012020	0.3	4
147	Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates. Journal of Materials Chemistry, 2011 , 21, 15629		27

146	Biofunctional Composites of Polysaccharides Containing Inorganic Nanoparticles 2011 ,		3
145	Mixed-Metal d-f Phosphonate Frameworks IPhotoluminescence and Magnetic Properties. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 2035-2044	2.3	23
144	A new supramolecular organic[horganic adduct: {[Eu(CH3OH)(H2O)8]2[Eu(H2O)8][PW12O40]3}[B(C14H20O5)[12(C28H40O10)[6(CH3OH)[6(H2O). Journal of Molecular Structure, 2011 , 989, 80-85	3.4	1
143	Synthesis and swelling behavior of temperature responsive Earrageenan nanogels. <i>Journal of Colloid and Interface Science</i> , 2011 , 355, 512-7	9.3	81
142	From Nanoparticles to Nanocomposites 2011 , 1-20		1
141	In situ and ex situ preparations of ZnO/poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites. <i>Journal of the Brazilian Chemical Society</i> , 2010 , 21, 1986-1991	1.5	20
140	Noble metal nanocrystals at the surface of nitride semiconductors: synthesis, deposition and surface characterization. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2574-7	1.3	1
139	Remanent magnetization in CoO antiferromagnetic nanoparticles. <i>Physical Review B</i> , 2010 , 82,	3.3	18
138	Shaping gold nanocomposites with tunable optical properties. <i>Langmuir</i> , 2010 , 26, 11407-12	4	19
137	Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3313		45
136	From single-molecule precursors to hybrid ZnS nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2768-75	1.3	
135	Photoluminescent materials based on silica doped with lanthanide complexes of 4Qformylbenzo-15-crown-5. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2779-86	1.3	
134	3D-2D-0D stepwise deconstruction of a water framework templated by a nanoporous organic-inorganic hybrid host. <i>Chemistry - A European Journal</i> , 2010 , 16, 7741-9	4.8	14
133	Silica coated magnetite particles for magnetic removal of Hg2+ from water. <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 234-40	9.3	301
132	Luminescent SiO2-coated Gd2O3:Eu3+ nanorods/poly(styrene) nanocomposites by in situ polymerization. <i>Optical Materials</i> , 2010 , 32, 1622-1628	3.3	11
131	Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. <i>Carbohydrate Polymers</i> , 2010 , 79, 1150-1156	10.3	50
130	Photoluminescent Porous Modular Lanthanide Vanadium Organic Frameworks. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4931-4945	2.3	36
129	Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. <i>Acta Biomaterialia</i> , 2009 , 5, 2279-89	10.8	234

128	Magnetic and structural properties of transition metal doped zinc-oxide nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 766-770	1.3	10
127	Preparation of nanocomposites by reversible addition-fragmentation chain transfer polymerization from the surface of quantum dots in miniemulsion. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5367-53	37 ² 7 ⁵	23
126	Supramolecular salts containing the anionic [Ge(C2O4)3]2lbomplex and heteroaromatic amines. <i>Inorganica Chimica Acta</i> , 2009 , 362, 263-270	2.7	10
125	Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles. Journal of Hazardous Materials, 2009 , 163, 36-42	12.8	57
124	Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2009 , 204, 168-173	4.7	95
123	Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 74, 304-8	6	24
122	Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. <i>Composites Science and Technology</i> , 2009 , 69, 1051-1056	8.6	95
121	Growth, Structural, and Optical Characterization of ZnO-Coated Cellulosic Fibers. <i>Crystal Growth and Design</i> , 2009 , 9, 386-390	3.5	55
120	Nanoencapsulation of Luminescent 3-Hydroxypicolinate Lanthanide Complexes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7567-7573	3.8	14
119	Three-Dimensional LanthanideDrganic Frameworks Based on Di-, Tetra-, and Hexameric Clusters. <i>Crystal Growth and Design</i> , 2009 , 9, 2098-2109	3.5	70
118	Biofunctionalized magnetic hydrogel nanospheres of magnetite and kappa-carrageenan. <i>Nanotechnology</i> , 2009 , 20, 355602	3.4	35
117	Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots. <i>Nanotechnology</i> , 2008 , 19, 155601	3.4	28
116	Terbium(III) complexes of 2-aminonicotinic, thiosalicylic and anthranilic acids: synthesis and photoluminescence properties. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 575-577	5.7	12
115	Photoluminescent 3D Lanthanide Organic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids. <i>Crystal Growth and Design</i> , 2008 , 8, 2505-2516	3.5	109
114	Polymer encapsulation effects on the magnetism of EuS nanocrystals. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4572		23
113	Hydro-Ionothermal Synthesis of Lanthanide-Organic Frameworks with 1,4-Phenylenebis(methylene)diphosphonate. <i>Crystal Growth and Design</i> , 2008 , 8, 3917-3920	3.5	56
112	Surface modification of Co-doped ZnO nanocrystals and its effects on the magnetic properties. Journal of Applied Physics, 2008 , 103, 07D140	2.5	16
111	Silver-bacterial cellulosic sponges as active SERS substrates. <i>Journal of Raman Spectroscopy</i> , 2008 , 39, 439-443	2.3	83

(2007-2008)

110	From Single-Molecule Precursors to Coupled Ag2S/TiO2 Nanocomposites. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 4380-4386	2.3	26
109	Controlled Integration of Nanocrystals in Inverted Hexagonal Nano-Pits at the Surface of Light-Emitting Heterostructures. <i>Advanced Materials</i> , 2008 , 20, 1038-1043	24	14
108	Rheological behavior of thermoreversible kappa-carrageenan/nanosilica gels. <i>Journal of Colloid and Interface Science</i> , 2008 , 320, 575-81	9.3	23
107	Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 205-11	9.3	34
106	Superhydrophobic cellulose nanocomposites. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 42-6	9.3	82
105	Synthesis, structure and magnetic behaviour of mixed metal leucophosphite. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 1330-1336	3.3	3
104	Screen-printing of TiO2 photocatalytic layers on glazed ceramic tiles. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 197, 125-131	4.7	56
103	Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 328, 107-113	5.1	35
102	Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. <i>Composites Science and Technology</i> , 2008 , 68, 1088-1093	8.6	86
101	A novel germanium(IV) oxalate complex: [Ge(OH)2(C2O4)2]2[Ilnorganic Chemistry Communication, 2008 , 11, 283-287	3.1	8
100	Two novel supramolecular organicIhorganic adducts containing dibenzo-30-crown-10 and H3PM12O40 (M=W or Mo). <i>Journal of Molecular Structure</i> , 2008 , 888, 99-106	3.4	11
99	Interconvertable modular framework and layered lanthanide(III)-etidronic acid coordination polymers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 150-67	16.4	148
98	Poly[[aqua-[B)-picolinato-[P)-picolinato-dipicolinatopotassium(I)terbium(III)] 2.5-hydrate]. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2008 , 64, m529-30		1
97	In situ synthesis of magnetite nanoparticles in carrageenan gels. <i>Biomacromolecules</i> , 2007 , 8, 2350-7	6.9	95
96	Heterodimetallic germanium(IV) complex structures with transition metals. <i>Inorganic Chemistry</i> , 2007 , 46, 6502-15	5.1	15
95	Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. <i>Nanotechnology</i> , 2007 , 18, 215609	3.4	13
94	Synthesis, Characterisation and Luminescent Properties of Lanthanide-Organic Polymers with Picolinic and Glutaric Acids. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 4238-4246	2.3	39
93	Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. <i>Journal of Colloid and Interface Science</i> , 2007 , 312, 506-12	9.3	69

92	Decaaquadioxobis[B-N-(phosphonomethyl)iminodiacetato]dimanganesedivanadium dihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m372-m375		6
91	Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. <i>Small</i> , 2007 , 3, 1230-6	11	91
90	Optical studies of ZnO nanocrystals doped with Eu3+ ions. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 129-133	2.6	48
89	Optical Fiber Sensing Using Quantum Dots. <i>Sensors</i> , 2007 , 7, 3489-3534	3.8	95
88	Decaaqua-dioxidobis[(B)-N-(phospho-n-atometh-yl)imino-diacetato]-dizinc(II)-divanadium(IV) dihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 64, m39-40		1
87	Desarrollo de pigmentos cerfhicos basados en residuos. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2007 , 46, 7-13	1.9	14
86	Bis(tetra-methyl-amonium) bis-(2,4,5-carboxy-benzoate)-benzene-1,2,4,5-tetra-carboxylic acid (1/1). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 64, o69-70		1
85	A novel cobalt(II)fholybdenum(V) phosphate organicIhorganic hybrid polymer. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 1497-1505	3.3	24
84	Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 726-734	2.3	48
83	Crystal Structure, Solid-State NMR Spectroscopic and Photoluminescence Studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6][2(L)[hH2O, L = hqn or phen. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 4741-4751	2.3	14
82	Controlled Synthesis of Morphological Well-Defined BiVO4 Pigment Particles Supported on Glass Substrates. <i>Materials Science Forum</i> , 2006 , 514-516, 1211-1215	0.4	1
81	Terbiumpolyoxotungstate Anions as Building Units to Fabricate Nanostructured Films. <i>Materials Science Forum</i> , 2006 , 514-516, 1135-1139	0.4	1
80	Development of Waste-Containing Malayaite Ceramic Pigments. <i>Advances in Science and Technology</i> , 2006 , 45, 2229-2234	0.1	1
79	Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals. <i>Nanotechnology</i> , 2006 , 17, 834-839	3.4	72
78	Layer-by-Layer Deposition of Organically Capped Quantum Dots. <i>Materials Science Forum</i> , 2006 , 514-516, 1111-1115	0.4	10
77	Optical active centres in ZnO samples. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 1453-1456	3.9	18
76	Size and shape-tuned overgrowth on Au nanorods regulated by polyallylamine. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 3373-5	1.3	3
75	[N-(2-Ammonioethyl)ethylenediamine-2N,N?][hydrogenN-(phosphonatomethyl)iminodiacetato]copper sesquihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, m335-m338	(II)	5

(2005-2006)

74	A pentanuclear oxovanadium(V) phosphate complex with phenanthroline. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 34-38	3.1	10
73	Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. <i>Composites Science and Technology</i> , 2006 , 66, 1038-1044	8.6	108
72	One-dimensional coordination polymer of N-(phosphonomethyl)iminodiacetic acid with iron(II). <i>Journal of Molecular Structure</i> , 2006 , 789, 200-208	3.4	22
71	Hydrothermal synthesis, structural characterisation and magnetic behaviour of (4,4?-bpyH)2[M(4,4?-bpy)(H2O)4][V2O2(pmida)2][ZH2O (M=Mn2+ and Co2+). <i>Inorganica Chimica Acta</i> , 2006 , 359, 1147-1158	2.7	18
70	Coordination modes of pyridine-carboxylic acid derivatives in samarium (III) complexes. <i>Polyhedron</i> , 2006 , 25, 2471-2482	2.7	29
69	Synthesis of SiO2-coated Bi2S3/poly(styrene) nanocomposites by in-situ polymerization. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 414-20	1.3	4
68	X-ray diffraction and solid-state NMR studies of a germanium binuclear complex. <i>Chemistry - A European Journal</i> , 2005 , 12, 363-75	4.8	16
67	Optimised hydrothermal synthesis of multi-dimensional hybrid coordination polymers containing flexible organic ligands. <i>Progress in Solid State Chemistry</i> , 2005 , 33, 113-125	8	39
66	Morphological micro-patterning of tubular-windows on crystalline K2V3O8 sheets. <i>Journal of Crystal Growth</i> , 2005 , 273, 572-576	1.6	3
65	Growth of cadmium selenide nanocrystals on submicron silica. <i>Journal of Crystal Growth</i> , 2005 , 279, 433	3- 4. 368	6
65 64	Growth of cadmium selenide nanocrystals on submicron silica. <i>Journal of Crystal Growth</i> , 2005 , 279, 433 Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. <i>Polyhedron</i> , 2005 , 24, 563-56		6
	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic		
64	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. <i>Polyhedron</i> , 2005 , 24, 563-56 Synthesis and characterisation of a new vanadyl oxalatophosphate compound:	59 ^{2.7}	24
64	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. <i>Polyhedron</i> , 2005 , 24, 563-56 [C10H10N2)[(VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [VO)(HPO4)[VO)(HPO4	2.7	24
64 63 62	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. Polyhedron, 2005, 24, 563-56] Synthesis and characterisation of a new vanadyl oxalatophosphate compound: (C10H10N2)[(VO)(HPO4)]2(C2O4). Inorganica Chimica Acta, 2005, 358, 927-932 Synthesis, characterisation and magnetic properties of copper(II) complexes with 3-hydroxypicolinic acid (HpicOH): the crystal structure of [Cu(picOH)2(BPE)]2[Cu(picOH)2(BPE)2][BH2O. Journal of Molecular Structure, 2005, 737, 221-229 Hydrothermal synthesis, structural characterisation and magnetic behaviour of hybrid complexes of	2.7 2.7 3.4	24 14 20
64 63 62 61	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. <i>Polyhedron</i> , 2005 , 24, 563-56 [Synthesis and characterisation of a new vanadyl oxalatophosphate compound: (C10H10N2)[(VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 [Synthesis, characterisation and magnetic properties of copper(II) complexes with 3-hydroxypicolinic acid (HpicOH): the crystal structure of [Cu(picOH)2(BPE)]2[[Cu(picOH)2(BPE)2][BH2O. <i>Journal of Molecular Structure</i> , 2005 , 737, 221-229 [Hydrothermal synthesis, structural characterisation and magnetic behaviour of hybrid complexes of N-(phosphonomethyl)iminodiacetate. <i>Journal of Molecular Structure</i> , 2005 , 754, 51-60 [Photoluminescence of zinc oxide supported on submicron silica particles. <i>Materials Science and</i>	2.7 2.7 3.4	24 14 20
64 63 62 61 60	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. <i>Polyhedron</i> , 2005 , 24, 563-56] Synthesis and characterisation of a new vanadyl oxalatophosphate compound: (C10H10N2)[(VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932 Synthesis, characterisation and magnetic properties of copper(II) complexes with 3-hydroxypicolinic acid (HpicOH): the crystal structure of [Cu(picOH)2(BPE)]2[Cu(picOH)2(BPE)2][BH2O. <i>Journal of Molecular Structure</i> , 2005 , 737, 221-229 Hydrothermal synthesis, structural characterisation and magnetic behaviour of hybrid complexes of N-(phosphonomethyl)iminodiacetate. <i>Journal of Molecular Structure</i> , 2005 , 754, 51-60 Photoluminescence of zinc oxide supported on submicron silica particles. <i>Materials Science and Engineering C</i> , 2005 , 25, 654-657	2.7 2.7 3.4 8.3	241420196

56	[Co(H2O)6]{[Co(C4H4N2)(H2O)2][V2O2(pmida)2]}[2H2O [H4pmida isN-(phosphonomethyl)iminodiacetic acid]: the first two-dimensional hybrid framework containing [V2O2(pmida)2]4Building blocks. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005 ,		5
55	[HydrogenN-(phosphonomethyl)iminodiacetato](1,10-phenanthroline)copper(II) trihydrate: a low-temperature redetermination. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005 , 61, m2247-m2250		4
54	Polymer encapsulation of CdE (E = S, se) quantum dot ensembles via in-situ radical polymerization in miniemulsion. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 766-71	1.3	31
53	A green-emitting CdSe/poly(butyl acrylate) nanocomposite. <i>Nanotechnology</i> , 2005 , 16, 1969-1973	3.4	23
52	Chemical Aspects of Semiconductor Nanocrystals 2004 , 157-179		
51	Synthesis of molybdenum (IV) disulfide using a single-source method. <i>Materials Research Bulletin</i> , 2004 , 39, 357-363	5.1	10
50	Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. <i>Materials Research Bulletin</i> , 2004 , 39, 683-693	5.1	70
49	A novel supramolecular organicIhorganic adduct containing EKeggin-type [PW12O40]3Enions and benzo-15-crown-5 molecules. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2004 , 60, m1-m5		5
48	Synthesis and Characterisation of the First Three-Dimensional Mixed-Metal-Center Inorganic-Organic Hybrid Framework with N-(Phosphonomethyl)iminodiacetate. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 2759-2768	2.3	10
47	Novel Phosphovanadate Layered Structure Assembled from a Tetrametallic Cubane-Like VV Cluster. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 3031-3037	2.3	15
46	Nanostructured Metals in Surface Enhanced Raman Spectroscopy. ChemInform, 2004, 35, no		1
45	Synthesis, characterization and crystal structure of a novel europium(III) supramolecular compound: {[Eu(CH3OH)6(H2O)2] [PMo12O40]}[C14H20O5)2[(CH3OH)2[(CH3CN)2. Journal of Molecular Structure, 2004, 689, 61-67	3.4	11
44	Lanthanide compounds containing a benzo-15-crown-5 derivatised [60] fullerene and the related [Tb(H2O)3(NO3)2(acac)] IC14H20O5 supramolecular adduct. <i>New Journal of Chemistry</i> , 2004 , 28, 1352-13	358	6
43	Novel luminescent materials based on silica doped with an europium(III) complex of 2,6-dihydroxybenzoic acid. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 344-348	5.7	4
42	Preparation of photoluminescent monolayers based on a polyoxotungstoeuropate. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 371-376	5.7	20
41	The LP-MOCVD of CdS/Bi2S3 bilayers using single-molecule precursors. <i>Materials Letters</i> , 2004 , 58, 119-	13232	11
40	Zinc sulfide nanocoating of silica submicron spheres using a single-source method. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 146-50	1.3	19
39	Novel luminescent materials based on silica doped with an europium(III) complex of 2,6-dihydroxybenzoic acidThe crystal structure of [nBu4N]2[Eu(2,6-Hdhb)5(H2O)2]. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 344-348	5.7	3

(2002-2004)

38	Lanthanopolyoxotungstoborates: synthesis, characterization, and layer-by-layer assembly of europium photoluminescent nanostructured films. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 214-20	1.3	21
37	NanocompBitos de matriz polimBica: estratĝias de sBtese de materiais hBridos. <i>Quimica Nova</i> , 2004 , 27, 798-806	1.6	50
36	Preparation of hollow shells of zinc oxide/bismuth(III) vanadate. <i>Materials Research Bulletin</i> , 2003 , 38, 1013-1020	5.1	5
35	Lanthanide Complexes of 2,6-Dihydroxybenzoic Acid: Synthesis, Crystal Structures and Luminescent Properties of [nBu4N]2[Ln(2,6-dhb)5(H2O)2] (Ln = Sm and Tb). <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3609-3617	2.3	36
34	Surface adsorption of 4,4?-dithiodipyridine and 2,2?-dithiodipyridine on silver nanoparticles. <i>Journal of Raman Spectroscopy</i> , 2003 , 34, 350-356	2.3	7
33	Lanthanide complexes of 2-hydroxynicotinic acid: synthesis, luminescence properties and the crystal structures of [Ln(HnicO)2(EhnicO)(H2O)][hH2O (Ln=Tb, Eu). <i>Polyhedron</i> , 2003 , 22, 3529-3539	2.7	36
32	Synthesis and assembly of SiO2-coated Bi2S3 nanofibers. <i>Journal of Colloid and Interface Science</i> , 2003 , 264, 391-5	9.3	10
31	Synthesis and crystal structure of [nBu4N][Er(pic)4][5.5H2O: a new infrared emitter. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 1234-1238	3.1	16
30	Plasma surface modification of polyethylene. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 222, 125-131	5.1	156
29	Tetrabutylammonium 2,6-dihydroxybenzoate 2,6-dihydroxybenzoic acid solvate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2003 , 59, o506-o508		3
28	catena-[1,3-Diammoniopropane di-🏿-hydroxo-di-🔻-phosphato-trioxotrivanadium dihydrate]: a redetermination at 180 (2) K. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2003 , 59, m179-	m182	1
27	The first dinuclear zinc(II) dithiocarbamate complex with butyl substituent groups. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2003 , 59, m1067-m1069		6
26	Chemical bath deposition of cerium doped BiVO4. Dyes and Pigments, 2003, 59, 181-184	4.6	39
25	Novel Lanthanide Luminescent Materials Based on Complexes of 3-Hydroxypicolinic Acid and Silica Nanoparticles. <i>Chemistry of Materials</i> , 2003 , 15, 100-108	9.6	216
24	Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors. The crystal structure of bismuth(III) dibutyldiselenocarbamate. <i>Journal of Materials Chemistry</i> , 2003 , 13, 3006		27
23	Deposition/Detachment of Particles on Plasma Treated Polymer Surfaces. <i>Materials Science Forum</i> , 2003 , 426-432, 2533-2538	0.4	14
22	Chemical bath deposition of BiVO4. <i>Thin Solid Films</i> , 2002 , 406, 93-97	2.2	73

20	The Synthesis of SiO2@CdS Nanocomposites Using Single-Molecule Precursors. <i>Chemistry of Materials</i> , 2002 , 14, 2900-2904	9.6	48
19	Adsorption of 2,2?-dithiodipyridine as a tool for the assembly of silver nanoparticles. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2339-2342		12
18	Synthetic studies on II/VI semiconductor quantum dots. <i>Current Opinion in Solid State and Materials Science</i> , 2002 , 6, 347-353	12	51
17	Langmuir B lodgett manipulation of capped cadmium sulfide quantum dots. <i>Thin Solid Films</i> , 2001 , 389, 272-277	2.2	15
16	Synthetic hollow zinc oxide microparticles. <i>Materials Research Bulletin</i> , 2001 , 36, 1099-1108	5.1	54
15	Use of Dialkyldithiocarbamato Complexes of Bismuth(III) for the Preparation of Nano- and Microsized Bi2S3 Particles and the X-ray Crystal Structures of [Bi{S2CN(CH3)(C6H13)}3] and [Bi{S2CN(CH3)(C6H13)}3(C12H8N2)]. <i>Chemistry of Materials</i> , 2001 , 13, 2103-2111	9.6	93
14	Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. <i>Chemistry of Materials</i> , 2001 , 13, 3843-3858	9.6	1081
13	The Use of Bismuth(III) Dithiocarbamato Complexes as Precursors for the Low-Pressure MOCVD of Bi2S3. <i>Chemical Vapor Deposition</i> , 2000 , 6, 230-232		45
12	Preparation and optical properties of CdSe/polymer nanocomposites. <i>Scripta Materialia</i> , 2000 , 43, 567-	-5₹.16	29
11	Preparation of Bi2S3 nanofibers using a single-source method. <i>Journal of Materials Science Letters</i> , 2000 , 19, 859-861		28
10	Developing a coordination chemistry of intact quantum dots: The preparation of novel nanocomposites of PbS with CdS or CdSe. <i>Journal of Materials Research</i> , 1999 , 14, 4140-4142	2.5	7
9	Synthesis of PbSe nanocrystallites using a single-source method. The X-ray crystal structure of lead (II) diethyldiselenocarbamate. <i>Polyhedron</i> , 1999 , 18, 1171-1175	2.7	42
8	Synthesis of PbS nanocrystallites using a novel single moleculeprecursors approach: X-ray single-crystal structure of Pb (S2CNEtPri)2. <i>Journal of Materials Chemistry</i> , 1997 , 7, 1011-1016		140
7	Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach. <i>Chemistry of Materials</i> , 1997 , 9, 523-530	9.6	248
6	Precursor chemistry: remaining challenges and some novel approaches. <i>Journal of Crystal Growth</i> , 1997 , 170, 23-29	1.6	24
5	Lead(II) dithiocarbamato complexes as precursors for the LP-MOCVD of lead sulfide. <i>Chemical Vapor Deposition</i> , 1997 , 3, 75-77		18
4	Synthesis of CdS and CdSe nanoparticles by thermolysis of diethyldithio-or diethyldiseleno-carbamates of cadmium. <i>Journal of Materials Chemistry</i> , 1996 , 6, 343		60
3	A single source approach to the synthesis of CdSe nanocrystallites. <i>Advanced Materials</i> , 1996 , 8, 161-16	5324	132

Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution. *Journal of Materials Chemistry*, **1994**, 4, 1611

94

A versatile synthetic route towards gelatin-silica hybrids and magnetic composite colloidal nanoparticles. *Advanced Composites and Hybrid Materials*,1

8.7