Tito Trindade

List of Publications by Citations

Source: https://exaly.com/author-pdf/5008327/tito-trindade-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

307
papers

9,940
citations

50
h-index

g-index

331
ext. papers

11,003
ext. citations

5.3
avg, IF

6.33
L-index

#	Paper	IF	Citations
307	Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. <i>Chemistry of Materials</i> , 2001 , 13, 3843-3858	9.6	1081
306	Silica coated magnetite particles for magnetic removal of Hg2+ from water. <i>Journal of Colloid and Interface Science</i> , 2010 , 345, 234-40	9.3	301
305	Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach. <i>Chemistry of Materials</i> , 1997 , 9, 523-530	9.6	248
304	Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. <i>Acta Biomaterialia</i> , 2009 , 5, 2279-89	10.8	234
303	N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2016 , 193, 67-74	21.8	218
302	Novel Lanthanide Luminescent Materials Based on Complexes of 3-Hydroxypicolinic Acid and Silica Nanoparticles. <i>Chemistry of Materials</i> , 2003 , 15, 100-108	9.6	216
301	Plasma surface modification of polyethylene. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 222, 125-131	5.1	156
300	Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. <i>Cellulose</i> , 2012 , 19, 1425-1436	5.5	150
299	Interconvertable modular framework and layered lanthanide(III)-etidronic acid coordination polymers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 150-67	16.4	148
298	Synthesis of PbS nanocrystallites using a novel single moleculeprecursors approach: X-ray single-crystal structure of Pb (S2CNEtPri)2. <i>Journal of Materials Chemistry</i> , 1997 , 7, 1011-1016		140
297	A single source approach to the synthesis of CdSe nanocrystallites. <i>Advanced Materials</i> , 1996 , 8, 161-16	5324	132
296	Hybrid nanostructures for SERS: materials development and chemical detection. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 21046-71	3.6	123
295	Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. <i>Carbohydrate Research</i> , 2012 , 348, 77-83	2.9	123
294	Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 417, 111-119	5.1	112
293	Photoluminescent 3D Lanthanide Drganic Frameworks with 2,5-Pyridinedicarboxylic and 1,4-Phenylenediacetic Acids. <i>Crystal Growth and Design</i> , 2008 , 8, 2505-2516	3.5	109
292	Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. <i>Composites Science and Technology</i> , 2006 , 66, 1038-1044	8.6	108
291	Supported ionic liquid silica nanoparticles (SILnPs) as an efficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. <i>Green Chemistry</i> , 2011 , 13, 340	10	105

(2009-2009)

290	Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2009 , 204, 168-173	4.7	95	
289	Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. <i>Composites Science and Technology</i> , 2009 , 69, 1051-1056	8.6	95	
288	In situ synthesis of magnetite nanoparticles in carrageenan gels. <i>Biomacromolecules</i> , 2007 , 8, 2350-7	6.9	95	
287	Optical Fiber Sensing Using Quantum Dots. <i>Sensors</i> , 2007 , 7, 3489-3534	3.8	95	
286	Preparation of zinc oxide and zinc sulfide powders by controlled precipitation from aqueous solution. <i>Journal of Materials Chemistry</i> , 1994 , 4, 1611		94	
285	Use of Dialkyldithiocarbamato Complexes of Bismuth(III) for the Preparation of Nano- and Microsized Bi2S3 Particles and the X-ray Crystal Structures of [Bi{S2CN(CH3)(C6H13)}3] and [Bi{S2CN(CH3)(C6H13)}3(C12H8N2)]. <i>Chemistry of Materials</i> , 2001 , 13, 2103-2111	9.6	93	
284	Polymer grafting from CdS quantum dots via AGET ATRP in miniemulsion. Small, 2007, 3, 1230-6	11	91	
283	Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 103, 143-8	6	86	
282	Novel SiO2/cellulose nanocomposites obtained by in situ synthesis and via polyelectrolytes assembly. <i>Composites Science and Technology</i> , 2008 , 68, 1088-1093	8.6	86	
281	Silver-bacterial cellulosic sponges as active SERS substrates. <i>Journal of Raman Spectroscopy</i> , 2008 , 39, 439-443	2.3	83	
280	Superhydrophobic cellulose nanocomposites. <i>Journal of Colloid and Interface Science</i> , 2008 , 324, 42-6	9.3	82	
279	Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. <i>Water Research</i> , 2011 , 45, 5773-84	12.5	81	
278	Synthesis and swelling behavior of temperature responsive Earrageenan nanogels. <i>Journal of Colloid and Interface Science</i> , 2011 , 355, 512-7	9.3	81	
277	Antibacterial activity of nanocomposites of copper and cellulose. <i>BioMed Research International</i> , 2013 , 2013, 280512	3	80	
276	Chemical bath deposition of BiVO4. Thin Solid Films, 2002, 406, 93-97	2.2	73	
275	Synthesis, surface modification and optical properties of Tb3+-doped ZnO nanocrystals. <i>Nanotechnology</i> , 2006 , 17, 834-839	3.4	72	
274	ECarrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. <i>Carbohydrate Polymers</i> , 2013 , 91, 100-9	10.3	71	
273	Three-Dimensional LanthanideDrganic Frameworks Based on Di-, Tetra-, and Hexameric Clusters. Crystal Growth and Design, 2009 , 9, 2098-2109	3.5	70	

272	Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. <i>Materials Research Bulletin</i> , 2004 , 39, 683-693	5.1	70
271	Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. <i>Journal of Colloid and Interface Science</i> , 2007 , 312, 506-12	9.3	69
270	Efficient sorbents based on magnetite coated with siliceous hybrid shells for removal of mercury ions. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8134	13	64
269	Chromium removal from contaminated waters using nanomaterials A review. <i>TrAC - Trends in Analytical Chemistry</i> , 2019 , 118, 277-291	14.6	63
268	Impact of magnetic nanofillers in the swelling and release properties of Earrageenan hydrogel nanocomposites. <i>Carbohydrate Polymers</i> , 2012 , 87, 328-335	10.3	61
267	Synthesis of CdS and CdSe nanoparticles by thermolysis of diethyldithio-or diethyldiseleno-carbamates of cadmium. <i>Journal of Materials Chemistry</i> , 1996 , 6, 343		60
266	A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 75, 129-140	14.6	58
265	Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles. <i>Journal of Hazardous Materials</i> , 2009 , 163, 36-42	12.8	57
264	Hydro-Ionothermal Synthesis of Lanthanide-Organic Frameworks with 1,4-Phenylenebis(methylene)diphosphonate. <i>Crystal Growth and Design</i> , 2008 , 8, 3917-3920	3.5	56
263	Screen-printing of TiO2 photocatalytic layers on glazed ceramic tiles. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 197, 125-131	4.7	56
262	Growth, Structural, and Optical Characterization of ZnO-Coated Cellulosic Fibers. <i>Crystal Growth and Design</i> , 2009 , 9, 386-390	3.5	55
261	Magnetic quaternary chitosan hybrid nanoparticles for the efficient uptake of diclofenac from water. <i>Carbohydrate Polymers</i> , 2019 , 203, 35-44	10.3	55
260	Synthetic hollow zinc oxide microparticles. <i>Materials Research Bulletin</i> , 2001 , 36, 1099-1108	5.1	54
259	Unusual dye adsorption behavior of Etarrageenan coated superparamagnetic nanoparticles. <i>Chemical Engineering Journal</i> , 2013 , 229, 276-284	14.7	51
258	Synthetic studies on II/VI semiconductor quantum dots. <i>Current Opinion in Solid State and Materials Science</i> , 2002 , 6, 347-353	12	51
257	Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. <i>Carbohydrate Polymers</i> , 2010 , 79, 1150-1156	10.3	50
256	Nanocomp\(\text{Bitos}\) de matriz polim\(\text{Bica}\): estrat\(\text{Bias}\) de s\(\text{Bitese}\) de materiais h\(\text{Bridos}\). Quimica Nova, 2004 , 27, 798-806	1.6	50
255	Optical studies of ZnO nanocrystals doped with Eu3+ ions. <i>Applied Physics A: Materials Science and Processing</i> , 2007 , 88, 129-133	2.6	48

(2005-2006)

254	Luminescent Polyoxotungstoeuropate Anion-Pillared Layered Double Hydroxides. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 726-734	2.3	48	
253	The Synthesis of SiO2@CdS Nanocomposites Using Single-Molecule Precursors. <i>Chemistry of Materials</i> , 2002 , 14, 2900-2904	9.6	48	
252	Recovery of Rare Earth Elements by Carbon-Based Nanomaterials-A Review. <i>Nanomaterials</i> , 2019 , 9,	5.4	46	
251	Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3313		45	
250	The Use of Bismuth(III) Dithiocarbamato Complexes as Precursors for the Low-Pressure MOCVD of Bi2S3. <i>Chemical Vapor Deposition</i> , 2000 , 6, 230-232		45	
249	Photothermally enhanced drug release by Etarrageenan hydrogels reinforced with multi-walled carbon nanotubes. <i>RSC Advances</i> , 2013 , 3, 10828	3.7	44	
248	Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water. Nanomaterials, 2017, 7,	5.4	44	
247	Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. <i>Colloid and Polymer Science</i> , 2014 , 292, 33-50	2.4	44	
246	Chitosan-silica hybrid nanosorbents for oil removal from water. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 532, 305-313	5.1	42	
245	Fluorescent Bioactive Corrole Grafted-Chitosan Films. <i>Biomacromolecules</i> , 2016 , 17, 1395-403	6.9	42	
244	Synthesis of PbSe nanocrystallites using a single-source method. The X-ray crystal structure of lead (II) diethyldiselenocarbamate. <i>Polyhedron</i> , 1999 , 18, 1171-1175	2.7	42	
243	Behavior of colloidal gold nanoparticles in different ionic strength media. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	40	
242	Assessment of gold nanoparticle effects in a marine teleost (Sparus aurata) using molecular and biochemical biomarkers. <i>Aquatic Toxicology</i> , 2016 , 177, 125-35	5.1	40	
241	Encapsulation of essential oils in SiO2 microcapsules and release behaviour of volatile compounds. Journal of Microencapsulation, 2014 , 31, 627-35	3.4	39	
240	Synthesis, Characterisation and Luminescent Properties of Lanthanide-Organic Polymers with Picolinic and Glutaric Acids. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 4238-4246	2.3	39	
239	Optimised hydrothermal synthesis of multi-dimensional hybrid coordination polymers containing flexible organic ligands. <i>Progress in Solid State Chemistry</i> , 2005 , 33, 113-125	8	39	
238	Chemical bath deposition of cerium doped BiVO4. <i>Dyes and Pigments</i> , 2003 , 59, 181-184	4.6	39	
237	Growth of BiVO4 particles in cellulosic fibres by in situ reaction. <i>Dyes and Pigments</i> , 2005 , 65, 125-127	4.6	38	

236	A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. <i>Talanta</i> , 2018 , 182, 558-566	6.2	37
235	Highly Efficient Removal of Dye from Water Using Magnetic Carrageenan/Silica Hybrid Nano-adsorbents. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1	2.6	36
234	Photoluminescent Porous Modular Lanthanide Vanadium Organic Frameworks. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 4931-4945	2.3	36
233	Lanthanide Complexes of 2,6-Dihydroxybenzoic Acid: Synthesis, Crystal Structures and Luminescent Properties of [nBu4N]2[Ln(2,6-dhb)5(H2O)2] (Ln = Sm and Tb). <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3609-3617	2.3	36
232	Lanthanide complexes of 2-hydroxynicotinic acid: synthesis, luminescence properties and the crystal structures of [Ln(HnicO)2(EHnicO)(H2O)][hH2O (Ln=Tb, Eu). <i>Polyhedron</i> , 2003 , 22, 3529-3539	2.7	36
231	Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. <i>Chemical Engineering Journal</i> , 2016 , 302, 560-569	14.7	35
230	Biofunctionalized magnetic hydrogel nanospheres of magnetite and kappa-carrageenan. <i>Nanotechnology</i> , 2009 , 20, 355602	3.4	35
229	Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 328, 107-113	5.1	35
228	Growth and Chemical Stability of Copper Nanostructures on Cellulosic Fibers. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 5043-5049	2.3	34
227	Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. Journal of Colloid and Interface Science, 2008 , 324, 205-11	9.3	34
226	Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels. <i>Gold Bulletin</i> , 2013 , 46, 25-33	1.6	33
225	Polymer encapsulation of CdE (E = S, se) quantum dot ensembles via in-situ radical polymerization in miniemulsion. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 766-71	1.3	31
224	Coordination modes of pyridine-carboxylic acid derivatives in samarium (III) complexes. <i>Polyhedron</i> , 2006 , 25, 2471-2482	2.7	29
223	Preparation and optical properties of CdSe/polymer nanocomposites. <i>Scripta Materialia</i> , 2000 , 43, 567-	5₹.%	29
222	Remediation of mercury contaminated saltwater with functionalized silica coated magnetite nanoparticles. <i>Science of the Total Environment</i> , 2016 , 557-558, 712-21	10.2	29
221	Trimethyl Chitosan/Siloxane-Hybrid Coated FeO Nanoparticles for the Uptake of Sulfamethoxazole from Water. <i>Molecules</i> , 2019 , 24,	4.8	28
220	Ferromagnetic sorbents based on nickel nanowires for efficient uptake of mercury from water. <i>ACS Applied Materials & District Material</i>	9.5	28
219	Corrole-silica hybrid particles: synthesis and effects on singlet oxygen generation. <i>RSC Advances</i> , 2013 , 3, 274-280	3.7	28

(2008-2008)

218	Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots. <i>Nanotechnology</i> , 2008 , 19, 155601	3.4	28
217	Preparation of Bi2S3 nanofibers using a single-source method. <i>Journal of Materials Science Letters</i> , 2000 , 19, 859-861		28
216	Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates. Journal of Materials Chemistry, 2011 , 21, 15629		27
215	Composites of Cellulose and Metal Nanoparticles 2012 ,		27
214	Aerosol-assisted metallo-organic chemical vapour deposition of Bi2Se3 films using single-molecule precursors. The crystal structure of bismuth(III) dibutyldiselenocarbamate. <i>Journal of Materials Chemistry</i> , 2003 , 13, 3006		27
213	Synthesis of nanocrystalline ZnS using biologically generated sulfide. <i>Hydrometallurgy</i> , 2012 , 117-118, 57-63	4	26
212	From Single-Molecule Precursors to Coupled Ag2S/TiO2 Nanocomposites. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 4380-4386	2.3	26
211	Supported ionic liquids as efficient materials to remove non-steroidal anti-inflammatory drugs from aqueous media. <i>Chemical Engineering Journal</i> , 2020 , 381, 122616	14.7	26
210	Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. <i>Colloids and Surfaces B: Biointerfaces</i> , 2009 , 74, 304-8	6	24
209	Precursor chemistry: remaining challenges and some novel approaches. <i>Journal of Crystal Growth</i> , 1997 , 170, 23-29	1.6	24
208	A novel cobalt(II)Tholybdenum(V) phosphate organicIhorganic hybrid polymer. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 1497-1505	3.3	24
207	Synthesis, characterisation and magnetic properties of cobalt (II) complexes with 3-hydroxypicolinic acid (HpicOH): [Co(picOH)2(H2O)2] and mer-[N(CH3)4][Co(picOH)3] [H2O. <i>Polyhedron</i> , 2005 , 24, 563-569]	3 .7	24
206	Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis. <i>Environmental Research</i> , 2019 , 175, 200-212	7.9	23
205	CarrageenanBilica Hybrid Nanoparticles Prepared by a Non-Emulsion Method. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4588-4594	2.3	23
204	Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates. <i>Journal of Chromatography A</i> , 2013 , 1299, 25-32	4.5	23
203	Mixed-Metal d-f Phosphonate Frameworks IPhotoluminescence and Magnetic Properties. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 2035-2044	2.3	23
202	Preparation of nanocomposites by reversible addition-fragmentation chain transfer polymerization from the surface of quantum dots in miniemulsion. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 5367-537	- 2 ₇ 5	23
201	Polymer encapsulation effects on the magnetism of EuS nanocrystals. <i>Journal of Materials</i> Chemistry, 2008 , 18, 4572		23

200	Rheological behavior of thermoreversible kappa-carrageenan/nanosilica gels. <i>Journal of Colloid and Interface Science</i> , 2008 , 320, 575-81	9.3	23
199	A green-emitting CdSe/poly(butyl acrylate) nanocomposite. <i>Nanotechnology</i> , 2005 , 16, 1969-1973	3.4	23
198	Effects of emerging contaminants on neurotransmission and biotransformation in marine organisms - An in vitro approach. <i>Marine Pollution Bulletin</i> , 2016 , 106, 236-44	6.7	23
197	Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles. <i>Chemosphere</i> , 2015 , 135, 304-	18.4	22
196	High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO, and Cu salt aged): transcriptomics in Enchytraeus crypticus. <i>Nanotoxicology</i> , 2018 , 12, 325-340	5.3	22
195	Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles. <i>Materials</i> , 2013 , 6, 3213-3225	3.5	22
194	One-dimensional coordination polymer of N-(phosphonomethyl)iminodiacetic acid with iron(II). <i>Journal of Molecular Structure</i> , 2006 , 789, 200-208	3.4	22
193	An ionic liquid route to prepare copper sulphide nanocrystals aiming at photocatalytic applications. <i>RSC Advances</i> , 2016 , 6, 34521-34528	3.7	22
192	The role of surface functionalization of silica nanoparticles for bioimaging. <i>Journal of Innovative Optical Health Sciences</i> , 2016 , 09, 1630005	1.2	21
191	Lanthanopolyoxotungstoborates: synthesis, characterization, and layer-by-layer assembly of europium photoluminescent nanostructured films. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 214-20	1.3	21
190	Recent advances on magnetic biosorbents and their applications for water treatment. <i>Environmental Chemistry Letters</i> , 2020 , 18, 151-164	13.3	21
189	Hybrids Based on Graphene Oxide and Porphyrin as Tools for Detection and Stabilization of DNA G-Quadruplexes. <i>ACS Omega</i> , 2018 , 3, 11184-11191	3.9	21
188	Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis. <i>Journal of Colloid and Interface Science</i> , 2013 , 410, 21-6	9.3	20
187	SERS study on adenine using a Ag/poly(t-butylacrylate) nanocomposite. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2013 , 101, 36-9	4.4	20
186	In situ and ex situ preparations of ZnO/poly-{trans-[RuCl2(vpy)4]/styrene} nanocomposites. <i>Journal of the Brazilian Chemical Society</i> , 2010 , 21, 1986-1991	1.5	20
185	Preparation of photoluminescent monolayers based on a polyoxotungstoeuropate. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 371-376	5.7	20
184	Synthesis, characterisation and magnetic properties of copper(II) complexes with 3-hydroxypicolinic acid (HpicOH): the crystal structure of [Cu(picOH)2(BPE)]2[Cu(picOH)2(BPE)2]BH2O. <i>Journal of Molecular Structure</i> , 2005 , 737, 221-229	3.4	20
183	Crystallization behaviour of new poly(tetramethyleneterephthalamide) nanocomposites containing SiO2 fillers with distinct morphologies. <i>Composites Part B: Engineering</i> , 2005 , 36, 51-59	10	20

182	Magnetic hydrogel nanocomposites and composite nanoparticlesa review of recent patented works. <i>Recent Patents on Nanotechnology</i> , 2013 , 7, 153-66	1.2	20	
181	Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3443-3461	2.3	20	
180	The controlled synthesis of complex hollow nanostructures and prospective applications. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 2018067	77 ^{2.4}	19	
179	Mercury in river, estuarine and seawaters - Is it possible to decrease realist environmental concentrations in order to achieve environmental quality standards?. <i>Water Research</i> , 2016 , 106, 439-4	149 ^{2.5}	19	
178	Core-shell magnetite-silica dithiocarbamate-derivatised particles achieve the Water Framework Directive quality criteria for mercury in surface waters. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 5963-74	5.1	19	
177	Shaping gold nanocomposites with tunable optical properties. <i>Langmuir</i> , 2010 , 26, 11407-12	4	19	
176	Zinc sulfide nanocoating of silica submicron spheres using a single-source method. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 146-50	1.3	19	
175	Hydrothermal synthesis, structural characterisation and magnetic behaviour of hybrid complexes of N-(phosphonomethyl)iminodiacetate. <i>Journal of Molecular Structure</i> , 2005 , 754, 51-60	3.4	19	
174	Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	18	
173	Polymer@gold Nanoparticles Prepared via RAFT Polymerization for Opto-Biodetection. <i>Polymers</i> , 2018 , 10,	4.5	18	
172	Raman Signal Enhancement Dependence on the Gel Strength of Ag/Hydrogels Used as SERS Substrates. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10384-10392	3.8	18	
171	Remanent magnetization in CoO antiferromagnetic nanoparticles. <i>Physical Review B</i> , 2010 , 82,	3.3	18	
170	Lead(II) dithiocarbamato complexes as precursors for the LP-MOCVD of lead sulfide. <i>Chemical Vapor Deposition</i> , 1997 , 3, 75-77		18	
169	Optical active centres in ZnO samples. <i>Journal of Non-Crystalline Solids</i> , 2006 , 352, 1453-1456	3.9	18	
168	Hydrothermal synthesis, structural characterisation and magnetic behaviour of (4,4?-bpyH)2[M(4,4?-bpy)(H2O)4][V2O2(pmida)2][2H2O (M=Mn2+ and Co2+). <i>Inorganica Chimica Acta</i> , 2006 , 359, 1147-1158	2.7	18	
167	Composites of Biopolymers and ZnO NPs for Controlled Release of Zinc in Agricultural Soils and Timed Delivery for Maize. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2134-2148	5.6	17	
166	Surface-Enhanced Raman Scattering Spectral Imaging for the Attomolar Range Detection of Crystal Violet in Contaminated Water. <i>ACS Omega</i> , 2018 , 3, 4331-4341	3.9	17	
165	Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 162, 7-14	3.2	17	

164	Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems. <i>Journal of Environmental Management</i> , 2013 , 128, 226-32	7.9	17
163	Tailoring gold and silver colloidal bimetallic nanoalloys towards SERS detection of rhodamine 6G. <i>RSC Advances</i> , 2017 , 7, 15944-15951	3.7	16
162	Magnetic Driven Nanocarriers for pH-Responsive Doxorubicin Release in Cancer Therapy. <i>Molecules</i> , 2020 , 25,	4.8	16
161	SERS studies of DNA nucleobases using new silver poly(methyl methacrylate) nanocomposites as analytical platforms. <i>Journal of Raman Spectroscopy</i> , 2015 , 46, 47-53	2.3	16
160	The role of operational parameters on the uptake of mercury by dithiocarbamate functionalized particles. <i>Chemical Engineering Journal</i> , 2014 , 254, 559-570	14.7	16
159	Surface modification of Co-doped ZnO nanocrystals and its effects on the magnetic properties. <i>Journal of Applied Physics</i> , 2008 , 103, 07D140	2.5	16
158	X-ray diffraction and solid-state NMR studies of a germanium binuclear complex. <i>Chemistry - A European Journal</i> , 2005 , 12, 363-75	4.8	16
157	Synthesis and crystal structure of [nBu4N][Er(pic)4][5.5H2O: a new infrared emitter. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 1234-1238	3.1	16
156	Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline. <i>Nanomaterials</i> , 2018 , 9,	5.4	16
155	Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 8283-302	5.7	15
154	Magnetic nanosorbents with siliceous hybrid shells of alginic acid and carrageenan for removal of ciprofloxacin. <i>International Journal of Biological Macromolecules</i> , 2019 , 139, 827-841	7.9	15
153	Fluorescence biolabeling using methylated silica nanoparticles containing a lanthanide complex. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 5429-5435	7.3	15
152	Heterodimetallic germanium(IV) complex structures with transition metals. <i>Inorganic Chemistry</i> , 2007 , 46, 6502-15	5.1	15
151	Novel Phosphovanadate Layered Structure Assembled from a Tetrametallic Cubane-Like VV Cluster. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 3031-3037	2.3	15
150	Langmuir B lodgett manipulation of capped cadmium sulfide quantum dots. <i>Thin Solid Films</i> , 2001 , 389, 272-277	2.2	15
149	Cytotoxicity and oxidative stress responses of silica-coated iron oxide nanoparticles in CHSE-214 cells. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 2055-2064	5.1	14
148	Nanoencapsulation of Luminescent 3-Hydroxypicolinate Lanthanide Complexes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7567-7573	3.8	14
147	3D-2D-0D stepwise deconstruction of a water framework templated by a nanoporous organic-inorganic hybrid host. <i>Chemistry - A European Journal</i> , 2010 , 16, 7741-9	4.8	14

(2008-2008)

146	Controlled Integration of Nanocrystals in Inverted Hexagonal Nano-Pits at the Surface of Light-Emitting Heterostructures. <i>Advanced Materials</i> , 2008 , 20, 1038-1043	24	14
145	Crystal Structure, Solid-State NMR Spectroscopic and Photoluminescence Studies of Organic-Inorganic Hybrid Materials (HL)6[Ge6(OH)6(hedp)6][2(L)[hH2O, L = hqn or phen. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 4741-4751	2.3	14
144	Deposition/Detachment of Particles on Plasma Treated Polymer Surfaces. <i>Materials Science Forum</i> , 2003 , 426-432, 2533-2538	0.4	14
143	Synthesis and characterisation of a new vanadyl oxalatophosphate compound: (C10H10N2)[(VO)(HPO4)]2(C2O4). <i>Inorganica Chimica Acta</i> , 2005 , 358, 927-932	2.7	14
142	Desarrollo de pigmentos cerfinicos basados en residuos. <i>Boletin De La Sociedad Espanola De Ceramica Y Vidrio</i> , 2007 , 46, 7-13	1.9	14
141	Functionalization of Graphene Oxide with Porphyrins: Synthetic Routes and Biological Applications. <i>ChemPlusChem</i> , 2020 , 85, 1857-1880	2.8	14
140	Uptake of Europium(III) from Water using Magnetite Nanoparticles. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 150-157	3.1	14
139	Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. <i>Chemosphere</i> , 2019 , 220, 11-19	8.4	14
138	Effects and bioaccumulation of gold nanoparticles in the gilthead seabream (Sparus aurata) - Single and combined exposures with gemfibrozil. <i>Chemosphere</i> , 2019 , 215, 248-260	8.4	14
137	Luminescent Transparent Composite Films Based on Lanthanopolyoxometalates and Filmogenic Polysaccharides. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 1890-1896	2.3	13
136	Composite blends of gold nanorods and poly(t-butylacrylate) beads as new substrates for SERS. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013 , 113, 100-6	4.4	13
135	Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. <i>Nanotechnology</i> , 2007 , 18, 215609	3.4	13
134	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. <i>Environmental Chemistry Letters</i> , 2021 , 19, 643-668	13.3	13
133	Raman imaging studies on the adsorption of methylene blue species onto silver modified linen fibers. <i>Journal of Raman Spectroscopy</i> , 2017 , 48, 795-802	2.3	12
132	Interference of the co-exposure of mercury with silica-coated iron oxide nanoparticles can modulate genotoxicity induced by their individual exposuresa paradox depicted in fish under in vitro conditions. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 3687-96	5.1	12
131	Brain glutathione redox system significance for the control of silica-coated magnetite nanoparticles with or without mercury co-exposures mediated oxidative stress in European eel (Anguilla anguilla L.). <i>Environmental Science and Pollution Research</i> , 2014 , 21, 7746-56	5.1	12
130	Resizing of Colloidal Gold Nanorods and Morphological Probing by SERS. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 20343-20350	3.8	12
129	Terbium(III) complexes of 2-aminonicotinic, thiosalicylic and anthranilic acids: synthesis and photoluminescence properties. <i>Journal of Alloys and Compounds</i> , 2008 , 451, 575-577	5.7	12

128	Adsorption of 2,2?-dithiodipyridine as a tool for the assembly of silver nanoparticles. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2339-2342		12
127	SERS and Raman imaging as a new tool to monitor dyeing on textile fibres. <i>Journal of Raman Spectroscopy</i> , 2016 , 47, 1239-1246	2.3	12
126	Gold loaded textile fibres as substrates for SERS detection. <i>Journal of Molecular Structure</i> , 2019 , 1185, 333-340	3.4	12
125	A General Route for Growing Metal Sulfides onto Graphene Oxide and Exfoliated Graphite Oxide. <i>Nanomaterials</i> , 2017 , 7,	5.4	11
124	A Comparative Study of Chemical Routes for Coating Gold Nanoparticles via Controlled RAFT Emulsion Polymerization. <i>Particle and Particle Systems Characterization</i> , 2017 , 34, 1600202	3.1	11
123	Luminescent SiO2-coated Gd2O3:Eu3+ nanorods/poly(styrene) nanocomposites by in situ polymerization. <i>Optical Materials</i> , 2010 , 32, 1622-1628	3.3	11
122	Two novel supramolecular organic[horganic adducts containing dibenzo-30-crown-10 and H3PM12O40 (M=W or Mo). <i>Journal of Molecular Structure</i> , 2008 , 888, 99-106	3.4	11
121	Synthesis, characterization and crystal structure of a novel europium(III) supramolecular compound: {[Eu(CH3OH)6(H2O)2] [PMo12O40]}[(C14H2OO5)2[(CH3OH)2[(CH3CN)2. <i>Journal of Molecular Structure</i> , 2004 , 689, 61-67	3.4	11
120	The LP-MOCVD of CdS/Bi2S3 bilayers using single-molecule precursors. <i>Materials Letters</i> , 2004 , 58, 119	-3232	11
119	Soil-pore water distribution of silver and gold engineered nanoparticles in undisturbed soils under unsaturated conditions. <i>Chemosphere</i> , 2015 , 136, 86-94	8.4	10
118	Can non-invasive methods be used to assess effects of nanoparticles in fish?. <i>Ecological Indicators</i> , 2018 , 95, 1118-1127	5.8	10
117	Can contaminated waters or wastewater be alternative sources for technology-critical elements? The case of removal and recovery of lanthanides. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120845	12.8	10
116	Effect of colloidal silver and gold nanoparticles on the thermal behavior of poly(t-butyl acrylate) composites. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 436, 231-236	5.1	10
115	SERS Detection of Penicillin G Using Magnetite Decorated with Gold Nanoparticles. <i>Magnetochemistry</i> , 2017 , 3, 32	3.1	10
114	Release behavior of trans,trans-farnesol entrapped in amorphous silica capsules. <i>Results in Pharma Sciences</i> , 2012 , 2, 52-6		10
113	Electrostatic mechanism of strong enhancement of light emitted by semiconductor quantum wells. <i>Physical Review B</i> , 2013 , 87,	3.3	10
112	Magnetic and structural properties of transition metal doped zinc-oxide nanostructures. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 766-770	1.3	10
111	Supramolecular salts containing the anionic [Ge(C2O4)3]2Icomplex and heteroaromatic amines. <i>Inorganica Chimica Acta</i> , 2009 , 362, 263-270	2.7	10

(2015-2006)

110	Layer-by-Layer Deposition of Organically Capped Quantum Dots. <i>Materials Science Forum</i> , 2006 , 514-516, 1111-1115	0.4	10
109	A pentanuclear oxovanadium(V) phosphate complex with phenanthroline. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 34-38	3.1	10
108	Synthesis of molybdenum (IV) disulfide using a single-source method. <i>Materials Research Bulletin</i> , 2004 , 39, 357-363	5.1	10
107	Synthesis and Characterisation of the First Three-Dimensional Mixed-Metal-Center Inorganic-Organic Hybrid Framework with N-(Phosphonomethyl)iminodiacetate. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 2759-2768	2.3	10
106	Synthesis and assembly of SiO2-coated Bi2S3 nanofibers. <i>Journal of Colloid and Interface Science</i> , 2003 , 264, 391-5	9.3	10
105	On the efficient removal, regeneration and reuse of quaternary chitosan magnetite nanosorbents for glyphosate herbicide in water. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105189	6.8	10
104	Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2016 , 475, 96-103	9.3	10
103	Coupling gold nanoparticles to Dye-Sensitized Solar Cells for an increased efficiency. <i>Electrochimica Acta</i> , 2019 , 300, 102-112	6.7	9
102	Silver-gelatine bionanocomposites for qualitative detection of a pesticide by SERS. <i>Analyst, The</i> , 2015 , 140, 1693-701	5	9
101	Multiple Emulsion Templating of Hybrid Ag/SiO2 Capsules for Antibacterial Applications. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 561-566	3.1	9
100	Cationic release behaviour of antimicrobial cellulose/silver nanocomposites. <i>Cellulose</i> , 2014 , 21, 3551-3	35969	9
99	Can water remediated by manganese spinel ferrite nanoparticles be safe for marine bivalves?. <i>Science of the Total Environment</i> , 2020 , 723, 137798	10.2	8
98	Structure and photoactivity for hydrogen production of CdS nanorods modified with In, Ga, Ag-In and Ag-Ga and prepared by solvothermal method. <i>Materials Today Energy</i> , 2018 , 9, 345-358	7	8
97	Towards the understanding of the intentionally induced yellow luminescence in GaN nanowires. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2013 , 10, 667-672		8
96	A novel germanium(IV) oxalate complex: [Ge(OH)2(C2O4)2]2\(\textit{Inorganic Chemistry Communication}\), 2008 , 11, 283-287	3.1	8
95	Multiorgan histopathological changes in the juvenile seabream Sparus aurata as a biomarker for zinc oxide particles toxicity. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 30907-30917	5.1	8
94	Colloidal dendritic nanostructures of gold and silver for SERS analysis of water pollutants. <i>Journal of Molecular Liquids</i> , 2021 , 337, 116608	6	8
93	Biotinylation of optically responsive gold/polyelectrolyte nanostructures. <i>Gold Bulletin</i> , 2015 , 48, 3-11	1.6	7

92	Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species-A Screening Study. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
91	Decoration of Carbon Nanostructures with Metal Sulfides by Sonolysis of Single-Molecule Precursors. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3184-3190	2.3	7
90	Magnetically responsive dry fluids. <i>Nanoscale</i> , 2013 , 5, 7229-33	7.7	7
89	Os nanomateriais e a descoberta de novos mundos na bancada do qufhico. <i>Quimica Nova</i> , 2012 , 35, 143	411614	5 ₇
88	Surface adsorption of 4,4?-dithiodipyridine and 2,2?-dithiodipyridine on silver nanoparticles. <i>Journal of Raman Spectroscopy</i> , 2003 , 34, 350-356	2.3	7
87	Developing a coordination chemistry of intact quantum dots: The preparation of novel nanocomposites of PbS with CdS or CdSe. <i>Journal of Materials Research</i> , 1999 , 14, 4140-4142	2.5	7
86	Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. <i>Nanomaterials</i> , 2018 , 8,	5.4	7
85	Surface-Enhanced Raman Scattering due to a Synergistic Effect on ZnS and Graphene Oxide. Journal of Physical Chemistry C, 2020 , 124, 12742-12751	3.8	6
84	Surface Engineered Magnetic Biosorbents for Water Treatment. <i>Environmental Chemistry for A Sustainable World</i> , 2018 , 301-342	0.8	6
83	Ultra sensitive quantification of Hg2+ sorption by functionalized nanoparticles using radioactive tracker spectroscopy. <i>Microchemical Journal</i> , 2018 , 138, 418-423	4.8	6
82	Cellulose/iron oxide hybrids as multifunctional pigments in thermoplastic starch based materials. <i>Cellulose</i> , 2013 , 20, 861-871	5.5	6
81	Decaaquadioxobis[B-N-(phosphonomethyl)iminodiacetato]dimanganesedivanadium dihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 63, m372-m375		6
80	Lanthanide compounds containing a benzo-15-crown-5 derivatised [60]fullerene and the related [Tb(H2O)3(NO3)2(acac)][C14H20O5 supramolecular adduct. <i>New Journal of Chemistry</i> , 2004 , 28, 1352-1	13358	6
79	The first dinuclear zinc(II) dithiocarbamate complex with butyl substituent groups. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2003 , 59, m1067-m1069		6
78	Growth of cadmium selenide nanocrystals on submicron silica. <i>Journal of Crystal Growth</i> , 2005 , 279, 433	3- 4.3 ⁄8	6
77	Photoluminescence of zinc oxide supported on submicron silica particles. <i>Materials Science and Engineering C</i> , 2005 , 25, 654-657	8.3	6
76	Targeting Cancer Cells with Photoactive Silica Nanoparticles. <i>Current Pharmaceutical Design</i> , 2016 , 22, 6021-6038	3.3	6
75	Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. <i>ACS Applied Nano Materials</i> 2021, 4, 4494, 4495	5.6	6

74	Luminescent Carrageenan Hydrogels Containing Lanthanopolyoxometalates. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4976-4981	2.3	5
73	Bionanocomposites for Magnetic Removal of Water Pollutants. <i>Advanced Structured Materials</i> , 2015 , 279-310	0.6	5
72	Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2015 , 50, 996-1010	2.3	5
71	Rescheduling the process of nanoparticle removal used for water mercury remediation can increase the risk to aquatic organism: evidence of innate immune functions modulation in European eel (Anguilla anguilla L.). <i>Environmental Science and Pollution Research</i> , 2015 , 22, 18574-89	5.1	5
70	Recovery of immunoglobulin G from rabbit serum using Earrageenan-modified hybrid magnetic nanoparticles. <i>International Journal of Biological Macromolecules</i> , 2020 , 150, 914-921	7.9	5
69	A single-source route for the synthesis of metal oxide nanoparticles using vegetable oil solvents. Journal of Nanoscience and Nanotechnology, 2012 , 12, 8963-8	1.3	5
68	[N-(2-Ammonioethyl)ethylenediamine-2N,N?][hydrogenN-(phosphonatomethyl)iminodiacetato]copper sesquihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2006 , 62, m335-m338	(11)	5
67	A novel supramolecular organicIhorganic adduct containing Ekeggin-type [PW12O40]3目nions and benzo-15-crown-5 molecules. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2004 , 60, m1-m5		5
66	Preparation of hollow shells of zinc oxide/bismuth(III) vanadate. <i>Materials Research Bulletin</i> , 2003 , 38, 1013-1020	5.1	5
65	[Co(H2O)6]{[Co(C4H4N2)(H2O)2][V2O2(pmida)2]}/IZH2O [H4pmida isN-(phosphonomethyl)iminodiacetic acid]: the first two-dimensional hybrid framework containing [V2O2(pmida)2]4Building blocks. Acta Crystallographica Section E: Structure Reports Online, 2005,		5
64	Optical properties of the synthetic nanocomposites SiO2/CdS/poly(styrene-co-maleic anhydride) and SiO2/CdS/poly(styrene-co-maleimide). <i>Journal of Nanoscience and Nanotechnology</i> , 2002 , 2, 177-81	1.3	5
63	Enhanced Removal of Non-Steroidal Inflammatory Drugs from Water by Quaternary Chitosan-Based Magnetic Nanosorbents. <i>Coatings</i> , 2021 , 11, 964	2.9	5
62	Effects of gold nanoparticles in gilthead seabream-A proteomic approach. <i>Aquatic Toxicology</i> , 2020 , 221, 105445	5.1	4
61	Lipid peroxidation and its control in Anguilla anguilla hepatocytes under silica-coated iron oxide nanoparticles (with or without mercury) exposure. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 9617-25	5.1	4
60	Neutron diffraction and magnetism of CoO antiferromagnetic nanoparticles. <i>Journal of Physics: Conference Series</i> , 2011 , 325, 012020	0.3	4
59	Eco-friendly hybrid pigments made of cellulose and iron oxides. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 6817-21	1.3	4
58	Novel luminescent materials based on silica doped with an europium(III) complex of 2,6-dihydroxybenzoic acid. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 344-348	5.7	4
57	Synthetic NaMnPO4 microtubules. <i>Materials Letters</i> , 2005 , 59, 652-655	3.3	4

56	[HydrogenN-(phosphonomethyl)iminodiacetato](1,10-phenanthroline)copper(II) trihydrate: a low-temperature redetermination. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005 , 61, m2247-m2250		4
55	Synthesis of SiO2-coated Bi2S3/poly(styrene) nanocomposites by in-situ polymerization. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 414-20	1.3	4
54	An integrated approach for trace detection of pollutants in water using polyelectrolyte functionalized magneto-plasmonic nanosorbents. <i>Scientific Reports</i> , 2019 , 9, 19647	4.9	4
53	Reliable quantification of mercury in natural waters using surface modified magnetite nanoparticles. <i>Chemosphere</i> , 2019 , 220, 565-573	8.4	4
52	Effects of long-term exposure to colloidal gold nanorods on freshwater microalgae. <i>Science of the Total Environment</i> , 2019 , 682, 70-79	10.2	3
51	An integrated approach to assess the sublethal effects of colloidal gold nanorods in tadpoles of Xenopus laevis. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123237	12.8	3
50	Biological effects and bioaccumulation of gold in gilthead seabream (Sparus aurata) - Nano versus ionic form. <i>Science of the Total Environment</i> , 2020 , 716, 137026	10.2	3
49	Defining and Using Very Small Crystals 2013 , 343-369		3
48	Biofunctional Composites of Polysaccharides Containing Inorganic Nanoparticles 2011,		3
47	Swelling and Release Properties of Functional Etarrageenan Hydrogel Nanocomposites. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1403, 164		3
46	Synthesis, structure and magnetic behaviour of mixed metal leucophosphite. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 1330-1336	3.3	3
45	Size and shape-tuned overgrowth on Au nanorods regulated by polyallylamine. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 3373-5	1.3	3
44	Tetrabutylammonium 2,6-dihydroxybenzoate 2,6-dihydroxybenzoic acid solvate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2003 , 59, o506-o508		3
43	Novel luminescent materials based on silica doped with an europium(III) complex of 2,6-dihydroxybenzoic acidThe crystal structure of [nBu4N]2[Eu(2,6-Hdhb)5(H2O)2]. <i>Journal of Alloys and Compounds</i> , 2004 , 374, 344-348	5.7	3
42	Morphological micro-patterning of tubular-windows on crystalline K2V3O8 sheets. <i>Journal of Crystal Growth</i> , 2005 , 273, 572-576	1.6	3
41	A versatile synthetic route towards gelatin-silica hybrids and magnetic composite colloidal nanoparticles. <i>Advanced Composites and Hybrid Materials</i> ,1	8.7	3
40	Dendrimer-Based Gold Nanostructures for SERS Detection of Pesticides in Water. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1153-1162	2.3	3
39	Spinel-type ferrite nanoparticles for removal of arsenic(V) from water. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 22523-22534	5.1	3

(2006-2019)

38	Impact of critical micelle concentration of macroRAFT agents on the encapsulation of colloidal Au nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2019 , 545, 251-258	9.3	2
37	A green method for the preparation of fluorescent hybrid structures of gold and corrole. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	2
36	Phagocytic cell responses to silica-coated dithiocarbamate-functionalized iron oxide nanoparticles and mercury co-exposures in Anguilla anguilla L. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 12272-86	5.1	2
35	Chapter 9:Nano dimensional ZnO: new chemical insights from an old material. <i>SPR Nanoscience</i> , 2013 , 255-285	3	2
34	Effects of single and combined exposures of gold (nano versus ionic form) and gemfibrozil in a liver organ culture of Sparus aurata. <i>Marine Pollution Bulletin</i> , 2020 , 160, 111665	6.7	2
33	Biofunctional Polymer Coated Au Nanoparticles Prepared via RAFT-Assisted Encapsulating Emulsion Polymerization and Click Chemistry. <i>Polymers</i> , 2020 , 12,	4.5	2
32	Dissolution of Ag Nanoparticles in Agricultural Soils and Effects on Soil Exoenzyme Activities. <i>Environments - MDPI</i> , 2021 , 8, 22	3.2	2
31	Water softening using graphene oxide/biopolymer hybrid nanomaterials. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105045	6.8	2
30	Graphene Oxide and Graphene Quantum Dots as Delivery Systems of Cationic Porphyrins: Photo-Antiproliferative Activity Evaluation towards T24 Human Bladder Cancer Cells. <i>Pharmaceutics</i> , 2021 , 13,	6.4	2
29	Metal-dendrimer hybrid nanomaterials for sensing applications. <i>Coordination Chemistry Reviews</i> , 2022 , 460, 214483	23.2	2
28	Parametric analysis of the growth of colloidal ZnO nanoparticles synthesized in alcoholic medium. Journal of Nanoparticle Research, 2017 , 19, 1	2.3	1
27	Improved ionic-liquid-functionalized macroporous supports able to purify nucleic acids in one step. <i>Materials Today Bio</i> , 2020 , 8, 100086	9.9	1
26	Design of Multifunctional Titania-Based Photocatalysts by Controlled Redox Reactions. <i>Materials</i> , 2020 , 13,	3.5	1
25	Magnetitettorrole Hybrid Nanoparticles. <i>Magnetochemistry</i> , 2018 , 4, 37	3.1	1
24	Nanobioinorganic Chemistry: Converging Inorganic Chemistry and Biology at the Nanoscale. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4447-4449	2.3	1
23	Noble metal nanocrystals at the surface of nitride semiconductors: synthesis, deposition and surface characterization. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2574-7	1.3	1
22	A new supramolecular organicihorganic adduct: {[Eu(CH3OH)(H2O)8]2[Eu(H2O)8][PW12O40]3}ß(C14H20O5)[2(C28H40O10)[6(CH3OH)[6(H2O). <i>Journal of Molecular Structure</i> , 2011 , 989, 80-85	3.4	1
21	Controlled Synthesis of Morphological Well-Defined BiVO4 Pigment Particles Supported on Glass Substrates. <i>Materials Science Forum</i> , 2006 , 514-516, 1211-1215	0.4	1

20	Terbiumpolyoxotungstate Anions as Building Units to Fabricate Nanostructured Films. <i>Materials Science Forum</i> , 2006 , 514-516, 1135-1139	0.4	1
19	Development of Waste-Containing Malayaite Ceramic Pigments. <i>Advances in Science and Technology</i> , 2006 , 45, 2229-2234	0.1	1
18	Nanostructured Metals in Surface Enhanced Raman Spectroscopy. ChemInform, 2004, 35, no		1
17	catena-[1,3-Diammoniopropane di-🏿 hydroxo-di-🔻 phosphato-trioxotrivanadium dihydrate]: a redetermination at 180 (2) K. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2003 , 59, m179-	m182	1
16	Decaaqua-dioxidobis[(B)-N-(phospho-n-atometh-yl)imino-diacetato]-dizinc(II)-divanadium(IV) dihydrate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 64, m39-40		1
15	Poly[[aqua-[B)-picolinato-[P])-picolinato-dipicolinatopotassium(I)terbium(III)] 2.5-hydrate]. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2008 , 64, m529-30		1
14	From Nanoparticles to Nanocomposites 2011 , 1-20		1
13	Quantum dot phthalocyanine non-covalent assemblies [A review. <i>Dyes and Pigments</i> , 2021 , 109931	4.6	1
12	Dendrimer stabilized nanoalloys for inkjet printing of surface-enhanced Raman scattering substrates <i>Journal of Colloid and Interface Science</i> , 2021 , 612, 342-354	9.3	1
11	Bis(tetra-methyl-amonium) bis-(2,4,5-carboxy-benzoate)-benzene-1,2,4,5-tetra-carboxylic acid (1/1). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2007 , 64, o69-70		1
10	Raman and Fluorescence Imaging of Polyoxometalate Composite Agarose Films. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 477-481	2.3	1
9	The Interactions of HTMPyP, Analogues and Its Metal Complexes with DNA G-Quadruplexes-An Overview. <i>Biomolecules</i> , 2021 , 11,	5.9	1
8	Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3440-3440	2.3	0
7	Complex cellular environments imaged by SERS nanoprobes using sugars as an all-in-one vector. Journal of Materials Chemistry B, 2021 , 9, 9285-9294	7.3	O
6	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. <i>Materials Advances</i> , 2021 , 2, 1613-1620	3.3	0
5	Carbamazepine polymorphism: A re-visitation using Raman imaging <i>International Journal of Pharmaceutics</i> , 2022 , 617, 121632	6.5	O
4	From single-molecule precursors to hybrid ZnS nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2768-75	1.3	
3	Photoluminescent materials based on silica doped with lanthanide complexes of 4@formylbenzo-15-crown-5. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2779-86	1.3	

LIST OF PUBLICATIONS

- 2 Chemical Aspects of Semiconductor Nanocrystals **2004**, 157-179
- Corrole-gold nanoparticles: Synthesis, ground and excited state solvation. *Dyes and Pigments*, **2022**, 1101/08