Ramon G Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5008166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyelectrolyte Multilayered Capsules as Biomedical Tools. Polymers, 2022, 14, 479.	2.0	14
2	Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers, 2022, 14, 1335.	2.0	9
3	A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620.	7.0	31
4	Effects of Oil Phase on the Inversion of Pickering Emulsions Stabilized by Palmitic Acid Decorated Silica Nanoparticles. Colloids and Interfaces, 2022, 6, 27.	0.9	4
5	Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. Energies, 2022, 15, 3399.	1.6	9
6	Pickering Emulsions: A Novel Tool for Cosmetic Formulators. Cosmetics, 2022, 9, 68.	1.5	19
7	Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Colloids and Interfaces, 2021, 5, 12.	0.9	9
8	Physico-chemical study of polymer mixtures formed by a polycation and a zwitterionic copolymer in aqueous solution and upon adsorption onto negatively charged surfaces. Polymer, 2021, 217, 123442.	1.8	18
9	Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers, 2021, 13, 1221.	2.0	34
10	Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. Colloids and Interfaces, 2021, 5, 30.	0.9	7
11	Fabrication of Robust Capsules by Sequential Assembly of Polyelectrolytes onto Charged Liposomes. Langmuir, 2021, 37, 6189-6200.	1.6	17
12	Static and Dynamic Selfâ€Assembly of Pearlâ€Likeâ€Chains of Magnetic Colloids Confined at Fluid Interfaces. Small, 2021, 17, e2101188.	5.2	16
13	Particle-laden fluid/fluid interfaces: physico-chemical foundations. Journal of Physics Condensed Matter, 2021, 33, 333001.	0.7	21
14	Nanoemulsions for the Encapsulation of Hydrophobic Actives. Cosmetics, 2021, 8, 45.	1.5	7
15	Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. International Journal of Molecular Sciences, 2021, 22, 7953.	1.8	7
16	Oil in Water Nanoemulsions Loaded with Tebuconazole for Populus Wood Protection against White- and Brown-Rot Fungi. Forests, 2021, 12, 1234.	0.9	8
17	Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. Colloids and Interfaces, 2021, 5, 50.	0.9	4
18	Hyaluronic Acid Hydrogel Particles Obtained Using Liposomes as Templates. Materials Proceedings, 2021, 7, 7.	0.2	0

#	Article	IF	CITATIONS
19	Controlled disassembly of colloidal aggregates confined at fluid interfaces using magnetic dipolar interactions. Journal of Colloid and Interface Science, 2020, 560, 388-397.	5.0	13
20	Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110578.	2.5	48
21	Effect of a natural amphoteric surfactant in the bulk and adsorption behavior of polyelectrolyte-surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124178.	2.3	32
22	Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125513.	2.3	10
23	Collective Transport of Magnetic Microparticles at a Fluid Interface through Dynamic Selfâ€Assembled Lattices. Advanced Functional Materials, 2020, 30, 2002206.	7.8	13
24	Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer–surfactant interactions. Physical Chemistry Chemical Physics, 2020, 22, 23360-23373.	1.3	14
25	Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant. Colloids and Interfaces, 2020, 4, 33.	0.9	32
26	Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. Colloids and Interfaces, 2020, 4, 47.	0.9	7
27	Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius. Molecules, 2020, 25, 2290.	1.7	13
28	A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Advances in Colloid and Interface Science, 2020, 282, 102197.	7.0	100
29	Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Advances in Colloid and Interface Science, 2020, 282, 102203.	7.0	27
30	Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Current Opinion in Colloid and Interface Science, 2020, 48, 91-108.	3.4	45
31	Influence of Carbon Nanosheets on the Behavior of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes, 2020, 8, 94.	1.3	13
32	Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces. Coatings, 2019, 9, 438.	1.2	28
33	Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Molecules, 2019, 24, 3442.	1.7	25
34	Giant Vesicles with Encapsulated Magnetic Nanowires as Versatile Carriers, Transported via Rotating and Nonhomogeneous Magnetic Fields. Particle and Particle Systems Characterization, 2019, 36, 1900239.	1.2	0
35	Influence of temperature on dynamic surface properties of spread DPPC monolayers in a broad range of surface pressures. Chemistry and Physics of Lipids, 2019, 225, 104812.	1.5	22
36	Oil-In-Water Microemulsions for Thymol Solubilization. Colloids and Interfaces, 2019, 3, 64.	0.9	23

#	Article	IF	CITATIONS
37	Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects. Springer Proceedings in Physics, 2019, , 255-276.	0.1	0
38	Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. Journal of Physical Chemistry C, 2018, 122, 4419-4427.	1.5	42
39	Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Physical Chemistry Chemical Physics, 2018, 20, 1395-1407.	1.3	45
40	Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 3082-3093.	4.0	25
41	Linear shear rheology of aging β-casein films adsorbing at the air/water interface. Journal of Colloid and Interface Science, 2018, 511, 12-20.	5.0	15
42	Preparation and Application in Drug Storage and Delivery of Agarose Nanoparticles. International Journal of Polymer Science, 2018, 2018, 1-9.	1.2	17
43	On the autonomous motion of active drops or bubbles. Journal of Colloid and Interface Science, 2018, 527, 180-186.	5.0	14
44	Equilibration of a Polycation–Anionic Surfactant Mixture at the Water/Vapor Interface. Langmuir, 2018, 34, 7455-7464.	1.6	33
45	Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 473-481.	2.3	16
46	Magnetic Biohybrid Vesicles Transported by an Internal Propulsion Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 29367-29377.	4.0	6
47	Shear rheology of fluid interfaces: Closing the gap between macro- and micro-rheology. Current Opinion in Colloid and Interface Science, 2018, 37, 33-48.	3.4	40
48	Formation of surfactant free microemulsions in the ternary system water/eugenol/ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 133-140.	2.3	35
49	Layer-by-Layer polyelectrolyte assemblies for encapsulation and release of active compounds. Advances in Colloid and Interface Science, 2017, 249, 290-307.	7.0	120
50	Phase Diagram of Fatty Acid Langmuir Monolayers from Rheological Measurements. Langmuir, 2017, 33, 4280-4290.	1.6	13
51	Thermo- and soluto-capillarity: Passive and active drops. Advances in Colloid and Interface Science, 2017, 247, 52-80.	7.0	28
52	Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ, 2017, 5, e3171.	0.9	51
53	3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Beilstein Journal of Nanotechnology, 2016, 7, 197-208.	1.5	19
54	Adsorption of poly(diallyldimethylammonium chloride)—sodium methyl-cocoyl-taurate complexes onto solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 150-157.	2.3	36

#	Article	IF	CITATIONS
55	Comment on "Formation of polyelectrolyte multilayers: ionic strengths and growth regimes―by K. Tang and A. M. Besseling, Soft Matter, 2016, 12 , 1032. Soft Matter, 2016, 12, 8460-8463.	1.2	10
56	Polymer–surfactant systems in bulk and at fluid interfaces. Advances in Colloid and Interface Science, 2016, 233, 38-64.	7.0	175
57	Honorary note: Clayton J. Radke. Advances in Colloid and Interface Science, 2016, 233, 1-3.	7.0	0
58	Relationship Between Composition, Structure and Dynamics of Main-Chain Liquid Crystalline Polymers with Biphenyl Mesogens. , 2016, , 453-476.		4
59	Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Advances in Condensed Matter Physics, 2015, 2015, 1-17.	0.4	55
60	Amphiphilic 2-ethyl hexyl methacrylate- <i>b-N</i> , <i>N</i> ′-dimethylacrylamide diblock copolymer monolayer behaviour at the air â^' water interface ^{â€} . Polymer International, 2015, 64, 740-7	749.	2
61	Magnetic Microwire Probes for the Magnetic Rod Interfacial Stress Rheometer. Langmuir, 2015, 31, 1410-1420.	1.6	31
62	Droplets with Surfactants. , 2015, , 315-337.		0
63	Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Advances in Colloid and Interface Science, 2015, 222, 461-487.	7.0	110
64	Field-induced sublimation in perfect two-dimensional colloidal crystals. Physical Review E, 2014, 89, 012306.	0.8	12
65	Particle laden fluid interfaces: Dynamics and interfacial rheology. Advances in Colloid and Interface Science, 2014, 206, 303-319.	7.0	164
66	Simultaneous spreading and evaporation: Recent developments. Advances in Colloid and Interface Science, 2014, 206, 382-398.	7.0	90
67	Contact angle of micro- and nanoparticles at fluid interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 355-367.	3.4	126
68	Honorary note. Advances in Colloid and Interface Science, 2014, 206, 1-4.	7.0	0
69	Dynamics of liquid interfaces under various types of external perturbations. Current Opinion in Colloid and Interface Science, 2014, 19, 309-319.	3.4	12
70	Stratified Interpolyelectrolyte Complexes: Fabrication, Structure and Properties. Engineering Materials, 2014, , 299-347.	0.3	4
71	Evaporation of Droplets of Surfactant Solutions. Langmuir, 2013, 29, 10028-10036.	1.6	87
72	Evaporation of pinned sessile microdroplets of water on a highly heat-conductive substrate: Computer simulations. European Physical Journal: Special Topics, 2013, 219, 143-154.	1.2	15

#	Article	IF	CITATIONS
73	Evaporation kinetics of sessile droplets of aqueous suspensions of inorganic nanoparticles. Journal of Colloid and Interface Science, 2013, 403, 49-57.	5.0	26
74	Salt effects on the air/solution interfacial properties of PEO-containing copolymers: Equilibrium, adsorption kinetics and surface rheological behavior. Journal of Colloid and Interface Science, 2013, 400, 49-58.	5.0	35
75	Synergistic Interaction of Short-Chain Phospholipids in the Adsorbed Film and Micelles: Study by Surface Tension and Dilational Viscoelasticity Measurements. Journal of Physical Chemistry C, 2013, 117, 1097-1104.	1.5	7
76	Polyelectrolyte assemblies for drug storage and delivery: multilayers, nanocapsules and multicapsules. , 2013, , 94-145.		2
77	Evaporation of Sessile Water Droplets in Presence of Contact Angle Hysteresis. Mathematical Modelling of Natural Phenomena, 2012, 7, 82-98.	0.9	4
78	Growth of Polyelectrolyte Layers Formed by Poly(4-styrenesulfonate sodium salt) and Two Different Polycations: New Insights from Study of Adsorption Kinetics. Journal of Physical Chemistry C, 2012, 116, 15474-15483.	1.5	59
79	Phase Behavior of Dense Colloidal Binary Monolayers. Langmuir, 2012, 28, 16555-16566.	1.6	32
80	Wettability of silicananoparticle–surfactant nanocomposite interfacial layers. Soft Matter, 2012, 8, 837-843.	1.2	142
81	X-ray Diffraction, Calorimetric, and Dielectric Relaxation Study of the Amorphous and Smectic States of a Main Chain Liquid Crystalline Polymer. Journal of Physical Chemistry B, 2012, 116, 9846-9859.	1.2	10
82	Adsorption of β-Casein–Surfactant Mixed Layers at the Air–Water Interface Evaluated by Interfacial Rheology. Journal of Physical Chemistry B, 2012, 116, 4898-4907.	1.2	24
83	Computer Simulations of Evaporation of Pinned Sessile Droplets: Influence of Kinetic Effects. Langmuir, 2012, 28, 15203-15211.	1.6	52
84	Evaporation of Pinned Sessile Microdroplets of Water: Computer Simulations. , 2012, , 79-84.		1
85	Spreading and Evaporation of Surfactant Solution Droplets. , 2012, , 1-6.		2
86	Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers. Physical Chemistry Chemical Physics, 2011, 13, 16416.	1.3	26
87	Adsorption of Conditioning Polymers on Solid Substrates with Different Charge Density. ACS Applied Materials & Interfaces, 2011, 3, 3181-3188.	4.0	50
88	Surface rheology: macro- and microrheology of poly(tert-butyl acrylate) monolayers. Soft Matter, 2011, 7, 7761.	1.2	53
89	Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer. Physical Chemistry Chemical Physics, 2011, 13, 9534.	1.3	24
90	Influence of the percentage of acetylation on the assembly of LbL multilayers of poly(acrylic acid) and chitosan. Physical Chemistry Chemical Physics, 2011, 13, 18200.	1.3	45

#	Article	IF	CITATIONS
91	Freezing Transition and Interaction Potential in Monolayers of Microparticles at Fluid Interfaces. Langmuir, 2011, 27, 3391-3400.	1.6	51
92	Computer Simulations of Quasi-Steady Evaporation of Sessile Liquid Droplets. , 2011, , 115-120.		1
93	pH-Induced Changes in the Fabrication of Multilayers of Poly(acrylic acid) and Chitosan: Fabrication, Properties, and Tests as a Drug Storage and Delivery System. Langmuir, 2011, 27, 6836-6845.	1.6	76
94	Evaporation of sessile water droplets: Universal behaviour in presence of contact angle hysteresis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 135-144.	2.3	75
95	Dielectric and molecular dynamics study of the secondary relaxations of poly(styrene-co-methylmethacrylate) copolymers: Influence of the molecular architecture. European Physical Journal E, 2011, 34, 1-14.	0.7	7
96	Droplets evaporation: Problems and solutions. European Physical Journal: Special Topics, 2011, 197, 265-278.	1.2	52
97	Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 209-218.	2.3	53
98	Evidence of the influence of adsorption kinetics on the internal reorganization of polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 274-281.	2.3	47
99	Rheology of poly(methyl methacrylate) Langmuir monolayers: Percolation transition to a soft glasslike system. Journal of Chemical Physics, 2011, 134, 104704.	1.2	28
100	Why do aqueous surfactant solutions spread over hydrophobic substrates?. Advances in Colloid and Interface Science, 2010, 161, 153-162.	7.0	29
101	Interfacial microrheology: Particle tracking and related techniques. Current Opinion in Colloid and Interface Science, 2010, 15, 237-245.	3.4	100
102	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 204-209.	2.3	15
103	Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 199-203.	2.3	30
104	Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: Computer simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 372, 127-134.	2.3	61
105	Polyelectrolyte Multilayers Containing Triblock Copolymers of Different Charge Ratio. Langmuir, 2010, 26, 11494-11502.	1.6	40
106	Reptation in langmuir polymer monolayers. Soft Matter, 2010, 6, 4407.	1.2	40
107	Effect of the spreading solvent on the three-phase contact angle of microparticles attached at fluid interfaces. Physical Chemistry Chemical Physics, 2010, 12, 14115.	1.3	54
108	Adsorption Kinetics and Mechanical Properties of Ultrathin Polyelectrolyte Multilayers: Liquid-Supported versus Solid-Supported Films. Journal of Physical Chemistry B, 2009, 113, 7128-7137.	1.2	81

Ramon G Rubio

#	Article	IF	CITATIONS
109	Stationary Electric Birefringence of Flexible Polyelectrolyte Solutions: Experimental Evidence of Different Counterion Polarization Mechanisms. Macromolecules, 2009, 42, 5843-5850.	2.2	7
110	Temperature and Concentration Effects on the Equilibrium and Dynamic Behavior of a Langmuir Monolayer: From Fluid to Gel-like Behavior. Langmuir, 2009, 25, 11528-11532.	1.6	20
111	Salt-induced changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium) Tj ETQq1 1 0.784	1314 rgBT 1.2	/Overlock 10 173
112	Equilibrium and Surface Rheology of Monolayers of Insoluble Polycations with Side Chains. Langmuir, 2009, 25, 12561-12568.	1.6	7
113	Isothermal Vaporâ~'Liquid Equilibrium of Binary Mixtures Containing 1-Chlorobutane, Ethanol, or Acetonitrile. Journal of Chemical & Engineering Data, 2009, 54, 613-618.	1.0	4
114	Dielectric and dynamic-mechanical study of the mobility of poly(t-butylacrylate) chains in diblock copolymers: Polystyrene-b-poly(t-butylacrylate). Polymer, 2008, 49, 5650-5658.	1.8	22
115	Polymer monolayers with a small viscoelastic linear regime: Equilibrium and rheology of poly(octadecyl acrylate) and poly(vinyl stearate). Journal of Chemical Physics, 2007, 126, 124904.	1.2	62
116	Adsorption of Water-Soluble Polymers with Surfactant Character. Dilational Viscoelasticity. Langmuir, 2007, 23, 3802-3808.	1.6	36
117	Surface rheology, equilibrium and dynamic features at interfaces, with emphasis on efficient tools for probing polymer dynamics at interfaces. Advances in Colloid and Interface Science, 2007, 134-135, 175-189.	7.0	62
118	Adsorption of water-soluble polymers with surfactant character Journal of Colloid and Interface Science, 2007, 307, 398-404.	5.0	38
119	Bulk and interfacial properties of a cationic micellar system near the critical point. Chemical Physics, 2007, 335, 124-132.	0.9	4
120	Dynamics in Ultrathin Films: Particle Tracking Microrheology of Langmuir Monolayers. The Open Physical Chemistry Journal, 2007, 1, 25-32.	0.4	17
121	Dilational Viscoelasticity of PEOâ^'PPOâ^'PEO Triblock Copolymer Films at the Airâ^'Water Interface in the Range of High Surface Pressures. Langmuir, 2006, 22, 2647-2652.	1.6	56
122	Spreading of liquid drops from a liquid source. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 247-255.	2.3	7
123	Dynamical mechanical behavior of copolymers made of styrene and methyl methacrylate: Random, alternate and diblock copolymers. Polymer, 2006, 47, 2349-2356.	1.8	14
124	Fourier-transform rheology of polymer Langmuir monolayers: Analysis of the non-linear and plastic behaviors. Advances in Colloid and Interface Science, 2006, 122, 67-77.	7.0	85
125	Equilibrium and dynamics of Langmuir monolayers when the interface is a selective solvent: Polystyrene-b-poly(t-butyl acrylate) block copolymers. Journal of Chemical Physics, 2006, 125, 074706.	1.2	17
126	Langmuir monolayers of the zwitterionic surfactant hexadecyl 1-N-I-tryptophan glycerol ether. Journal of Colloid and Interface Science, 2005, 283, 144-152.	5.0	19

#	Article	IF	CITATIONS
127	Surface Rheology of Two-Dimensional Percolating Networks: Langmuir Films of Polymer Pancakes. Physical Review Letters, 2005, 95, 056103.	2.9	39
128	Collective and self-diffusion coefficients in an ionic critical mixture: 3-methylpyridine+water+NaBr. Journal of Chemical Physics, 2005, 122, 104501.	1.2	12
129	Densityâ^'Pressure Relationship in Hydrogen-Bonded Mixtures:  1,4-Butanediol + 1-Dodecanol. Journal of Chemical & Engineering Data, 2005, 50, 591-595.	1.0	7
130	Surface Light-Scattering at the Airâ^'Liquid Interface:Â From Newtonian to Viscoelastic Polymer Solutions. Journal of Physical Chemistry B, 2005, 109, 4694-4699.	1.2	18
131	Equilibrium Behavior and Dilational Rheology of Polyelectrolyte/Insoluble Surfactant Adsorption Films:Â Didodecyldimethylammonium Bromide and Sodium Poly(styrenesulfonate). Journal of Physical Chemistry B, 2005, 109, 18316-18323.	1.2	41
132	Long-Time Relaxation Dynamics of Langmuir Films of a Glass-Forming Polymer: Evidence of Glasslike Dynamics in Two Dimensions. Physical Review Letters, 2004, 92, 255503.	2.9	42
133	Concentration Fluctuations and Surface Adsorption in Hydrogen-Bonded Mixtures. Journal of Physical Chemistry B, 2004, 108, 10019-10024.	1.2	4
134	Experimental Study of the Dynamic Properties of Monolayers of PSâ^'PEO Block Copolymers:Â The Attractive Monomer Surface Case. Macromolecules, 2003, 36, 4068-4077.	2.2	43
135	Anomalous Damping of the Capillary Waves at the Airâ^'Water Interface of a Soluble Triblock Copolymer. Langmuir, 2003, 19, 2147-2154.	1.6	40
136	Crossover critical phenomena in an aqueous electrolyte solution: Light scattering, density and viscosity of the 3-methylpyridine+water+NaBr system. Journal of Chemical Physics, 2003, 119, 4428-4436.	1.2	36
137	Concentration fluctuations and surface adsorption in non-ideal binary mixtures. A light-scattering and surface tension study. Physical Chemistry Chemical Physics, 2003, 5, 4864-4868.	1.3	3
138	Relaxation Dynamics of Langmuir Polymer Films: A Power-Law Analysis. Physical Review Letters, 2003, 91, 268302.	2.9	50
139	Capillary Waves in Ionic Surfactant Solutions:Â Effects of the Electrostatic Adsorption Barrier and Analysis in Terms of a New Dispersion Equation. Journal of Physical Chemistry B, 2002, 106, 5636-5644.	1.2	21
140	Dielectric Study of the Dynamics of Poly(oxyethylene) Chains in Triblock Copolymers: Poly(oxyethylene)-b-polystyrene-b-poly(oxyethylene). Macromolecules, 2002, 35, 5483-5490.	2.2	11
141	Dilational rheology of monolayers of a miscible polymer blend: From good- to poor-solvent conditions. European Physical Journal E, 2002, 9, 375-385.	0.7	21
142	An Experimental Study of the Stability and Dynamics of Langmuir Films of Fullerene Derivatives and Their Mixtures with Pentadecanoic Acid. Langmuir, 2001, 17, 3317-3328.	1.6	13
143	Experimental study of the equation of state and the surface tension of water-soluble polymers: poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) + water at 298.15 K. Physical Chemistry Chemical Physics, 2001, 3, 1861-1866.	1.3	8
144	Dielectric relaxation of poly(ethylenglycol)- b-poly(propylenglycol)-b-poly(ethylenglycol) copolymers above the glass transition temperature. European Physical Journal E, 2001, 4, 173-182.	0.7	13

#	Article	IF	CITATIONS
145	Dilational rheology of Langmuir polymer monolayers: Poor-solvent conditions. Journal of Chemical Physics, 2001, 115, 530-539.	1.2	55
146	Equation of state of a blend of water-soluble polymers: poly(propylene glycol)+poly(ethylene glycol). Polymer, 2000, 41, 7407-7414.	1.8	23
147	Thermoelastic behaviour of polyvinylacetate monolayers at the air-water interface: Evidences for liquid-solid phase transition. European Physical Journal B, 2000, 13, 745-754.	0.6	24
148	Critical behaviour of complex systems. Journal of Physics Condensed Matter, 2000, 12, A459-A463.	0.7	9
149	Monolayers of Symmetric Triblock Copolymers at the Airâ `Water Interface. 2. Adsorption Kinetics. Langmuir, 2000, 16, 1094-1101.	1.6	61
150	Viscoelastic Behavior of 1-Dodecanol Monolayers Undergoing a Liquidâ^'Solid Phase Transition. A Surface Quasielastic Light Scattering Study. Langmuir, 2000, 16, 6657-6666.	1.6	33
151	Monolayers of Symmetric Triblock Copolymers at the Airâ^'Water Interface. 1. Equilibrium Properties. Langmuir, 2000, 16, 1083-1093.	1.6	90
152	Nonexponential Behavior Near the Critical Point of an Ionic Micellar System. International Journal of Thermophysics, 1999, 20, 1765-1778.	1.0	2
153	Calorimetric and dielectric study of a blend containing a conductive polymer: poly(3-octylthiophene)+poly(ethylene-co-vinylacetate). Polymer, 1999, 40, 5833-5842.	1.8	14
154	Rheology of a Miscible Polymer Blend at the Airâ^'Water Interface. Quasielastic Surface Light Scattering Study and Analysis in Terms of Static and Dynamic Scaling Laws. Journal of Physical Chemistry B, 1999, 103, 2061-2071.	1.2	34
155	Monolayers of hydrogen-bonded polymer blends at the air-water interface: poly(vinylacetate)+poly (4-hydroxystyrene). Colloid and Polymer Science, 1998, 276, 960-967.	1.0	11
156	Two-exponential correlation functions near the critical point of a micellar system. Physical Review E, 1998, 58, 2151-2160.	0.8	13
157	Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate). Physical Review E, 1998, 58, 7629-7641.	0.8	91
158	Equation of State of Hydrogen-Bonded Polymer Solutions. Poly(propylene glycol) + n-Hexane and Poly(propylene glycol) + Ethanol. Macromolecules, 1997, 30, 3389-3394.	2.2	17
159	Vapor-liquid equilibrium of the methanolî—,[1,1-dimethylethyl methyl ether (MTBE) or 1,1-dimethylpropyl methy ether (TAME)] systems. Fluid Phase Equilibria, 1997, 133, 89-103.	1.4	19
160	Dielectric study of poly(methylacrylate) plus poly(4-hydroxystyrene) or plus poly(4) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 1 1.8	142_{13} Td (hydro
161	Vaporâ^'Liquid Equilibrium for Methanol + 1,1-Dimethylpropyl Methyl Ether at (288.15, 308.15, and 328.15) K. Journal of Chemical & Engineering Data, 1996, 41, 537-542.	1.0	19
	Bulk and surface properties for the methanol–1,1-dimethylpropyl methyl ether and		

1.7 13

methanol–1,1-dimethylethyl methyl ether systems. Journal of the Chemical Society, Faraday
Transactions, 1996, 92, 4435-4440.

#	Article	IF	CITATIONS
163	Vapor‣iquid Equilibrium of the Methanolâ€≺i>tertâ€Butyl Methyl Ether (MTBE) System. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 482-489.	0.9	21
164	Excess enthalpies, and vapor-liquid equilibrium and surface properties of the highly non-ideal associated mixtures formed by an alcohol and propanal. Fluid Phase Equilibria, 1996, 126, 177-194.	1.4	7
165	Temperature dependence of the density of an ionic micellar system near the critical point. Chemical Physics, 1996, 212, 301-310.	0.9	5
166	Double-exponential relaxation near the critical point of an ionic micellar system. Physical Review E, 1996, 54, 5302-5308.	0.8	10
167	Hydrogen-Bonded Polymer Blends. Blends Containing Poly(4-hydroxystyrene-co-4-methoxystyrene) Copolymers. Polymer Journal, 1995, 27, 10-20.	1.3	17
168	Critical behavior of a cationic-surfactant–water–salt system near and far from the Krafft temperature. Physical Review E, 1995, 52, 1871-1876.	0.8	6
169	Equation of State of Hydrogen-Bonded Polymer Solutions: Poly(4-hydroxystyrene) + Ethanol and + Tetrahydrofuran. The Journal of Physical Chemistry, 1995, 99, 10261-10266.	2.9	11
170	Bulk and surface properties of the highly non-ideal associated mixtures formed by methanol and propanal. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2779-2787.	1.7	16
171	Vapour-liquid equilibrium of the ethanol–propanal system. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 273-278.	1.7	25
172	Simultaneous description of excess enthalpy and vapour–liquid equilibrium data of associated mixtures by means of a lattice–fluid model. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 4381-4388.	1.7	8
173	Heat capacities and concentration fluctuations in mixtures of 1,2-dibromoethane with alkanes. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1941-1947.	1.7	16
174	Dynamic-Mechanical Study of the Dynamics of Polymer Blends near the Glass Transition. Macromolecules, 1995, 28, 2693-2699.	2.2	24
175	Dynamicâ€mechanical and light scattering study of the glass transition of poly(vinylacetate) and a poly(vinylacetate) +poly(4â€hydroxystyrene) blend. Journal of Chemical Physics, 1994, 100, 3258-3267.	1.2	14
176	Experimental study of the approach to a double critical point in the poly(styrene) plus acetone system: Test of fluctuation-isomorphism theory. Physical Review E, 1994, 49, 1404-1410.	0.8	9
177	The system poly(4-hydroxystyrene)/poly(vinyl acetate)/acetone: An experimental and theoretical study. Macromolecular Chemistry and Physics, 1994, 195, 1043-1062.	1.1	21
178	Glass transition temperature for blends containing poly(4-hydroxystyrene). European Polymer Journal, 1994, 30, 781-787.	2.6	18
179	Critical behavior of ionic micellar systems at different salt concentrations. Journal of Chemical Physics, 1994, 101, 6874-6879.	1.2	35
180	Polymer Solutions with Specific Interactions: Equation of State for Poly(4-hydroxystyrene) + Acetone. Macromolecules, 1994, 27, 3478-3482.	2.2	10

#	Article	IF	CITATIONS
181	Effect of pressure on the coexistence curve of methanol+n-heptane in the near critical region. Chemical Physics, 1993, 173, 457-466.	0.9	5
182	Thermophysical behavior of polar + nonpolar simple molecular mixtures: an experimental study of the acetonitrile + benzene system. The Journal of Physical Chemistry, 1993, 97, 10796-10802.	2.9	14
183	Experimental study of the renormalization of \hat{l}^2 near a double critical point: The 2-butanol and water system. Physical Review B, 1993, 47, 630-637.	1.1	18
184	Interfacial properties of mixtures of molecular fluids: comparison between theory and experiment; methyl iodide + carbon tetrachloride and acetonitrile + carbon tetrachloride. The Journal of Physical Chemistry, 1992, 96, 8488-8497.	2.9	39
185	Thermal expansion and pressure dependence of the critical temperature near the lower-critical solution point of 2-butoxyethanol+water. Chemical Physics, 1992, 164, 465-471.	0.9	8
186	Search for the effect of pressure on liquid-liquid critical phenomena. Pramana - Journal of Physics, 1992, 39, 95-100.	0.9	2
187	Range of simple scaling and critical amplitudes near a LCST. The 2-butoxyethanol + water system. Chemical Physics, 1992, 165, 31-39.	0.9	28
188	Temperature and chain-length dependence of the volumetric properties of 1-chlorobutane–alkane mixtures. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 93-99.	1.7	14
189	Thermodynamic properties of simple molecular fluids: tetrafluoromethane and trifluoromethane. Journal of Chemical & Engineering Data, 1991, 36, 171-184.	1.0	23
190	Pressure dependence of the excess properties of simple molecular mixtures: the carbon tetrachloride + dichloromethane system. The Journal of Physical Chemistry, 1991, 95, 319-324.	2.9	7
191	Experimental and theoretical study of the equation of state of trifluoromethane in the near-critical region. The Journal of Physical Chemistry, 1991, 95, 3351-3357.	2.9	30
192	Polymer solutions with specific interactions: η parameter for poly(4-hydroxystyrene) + acetone. Macromolecules, 1991, 24, 1315-1320.	2.2	11
193	Influence of the molecular shape on the volumetric properties of mixtures. The excess volumes of hexafluorobenzene or fluorobenzene +an octane isomer. Journal of Solution Chemistry, 1990, 19, 409-423.	0.6	3
194	Anatomy of a three species tautomeric process: The ring-chain tautomerism in 5,6-dihydro-2-hydroxy-2,3-dimethyl-2H-1,4-oxazine. Tetrahedron Letters, 1990, 31, 4211-4214.	0.7	8
195	The unusual coexistence curve of 2-butanol + water. An experimental and theoretical study. Chemical Physics, 1990, 146, 39-45.	0.9	7
196	Coexistence curve of methanol+n-heptane: Range of simple scaling and critical amplitudes. Physical Review B, 1990, 41, 9003-9012.	1.1	27
197	Surface properties of mixtures of molecular fluids: an experimental and theoretical study of carbon disulfide + dichloromethane and carbon disulfide + carbon tetrachloride. The Journal of Physical Chemistry, 1989, 93, 3210-3218.	2.9	21
198	Bulk modulus for some simple molecular fluids. Chemical Physics, 1989, 130, 177-186.	0.9	9

#	Article	IF	CITATIONS
199	Calculation of the average correlation function of hard convex molecules from the structure of a hard sphere system. Fluid Phase Equilibria, 1989, 48, 31-51.	1.4	2
200	Excess volumes of binary mixtures of an octane isomer and a polar component. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 3425.	1.0	5
201	Volumetric properties of mixtures of simple molecular fluids. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 4295.	1.0	4
202	Equation of state of mixtures of simple molecular fluids: the carbon disulfide + dichloromethane system. The Journal of Physical Chemistry, 1989, 93, 4973-4981.	2.9	4
203	A _{pâ€Vâ€T} Surface for Trifluoromethane. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 791-800.	0.9	36
204	Mixtures with "wâ€Shape―C ^E _p curves. A light scattering study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 48-56.	0.9	37
205	Liquid–liquid critical phenomena. The influence of pressure on the coexistence curve of the methanol + cyclohexane system. Journal of Chemical Physics, 1988, 88, 1934-1943.	1.2	27
206	Thermodynamics of fluorocarbon–hydrocarbon mixtures. The systems formed by 2,2,4-trimethylpentane with hexafluorobenzene and with hexafluorobenzene–benzene. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 539.	1.0	9
207	Bulk and surface thermodynamic properties in mixtures of small rigid molecules: the carbon tetrachloride + carbon disulfide system. The Journal of Physical Chemistry, 1988, 92, 228-234.	2.9	13
208	Influence of pressure on the thermodynamic properties of simple molecular fluids: carbon tetrachloride + carbon disulfide system. The Journal of Physical Chemistry, 1988, 92, 3998-4006.	2.9	8
209	Local compositions in real mixtures of simple molecules. The Journal of Physical Chemistry, 1987, 91, 1177-1184.	2.9	29
210	Thermodynamics of mixtures with a hexane isomer. Excess volumes of 1-chlorohexane with a hexane isomer at 298.15 K. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 819.	1.0	9
211	Thermodynamic properties of {xC6F6 + (1 â^' x)C14H30} and {x1C6F6 + x2C6H6 + (1 â^' x1 â^' x2)C14H30} at 298.15 K. Journal of Chemical Thermodynamics, 1987, 19, 605-611.	1.0	11
212	Perturbed hard-core equations of state for fluids. Materials Chemistry and Physics, 1987, 18, 325-342.	2.0	2
213	Thermodynamics of three toluene-containing mixtures. Generalized van der Waals and Ising-like models. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 1839.	1.0	11
214	Thermodynamics of hydrocarbon systems using an Ising-like model. The Journal of Physical Chemistry, 1986, 90, 889-894.	2.9	5
215	Kirkwood—Buff integrals in non-electrolyte solutions. An evaluation of the local composition from experimental data. Fluid Phase Equilibria, 1986, 26, 1-13.	1.4	9
216	Excess properties of the hexafluorobenzene—n-hexadecane and hexafluorobenzene—benzene—n-hexadecane systems at 298.15 K. Fluid Phase Equilibria, 1986, 31, 71-87.	1.4	7

#	Article	IF	CITATIONS
217	Excess enthalpies of ethylbenzene + alkane systems at 25�C. An interpretation in terms of the Prigogine-Flory-Patterson model. Journal of Solution Chemistry, 1985, 14, 345-354.	0.6	12
218	p, T, x, y data of benzene + n-hexane and cyclohexane + n-heptane systems. Fluid Phase Equilibria, 1985, 24, 241-258.	1.4	30
219	Thermodynamics of benzene + alkane and cyclohexane + alkane systems. An estimation of the free volume. Fluid Phase Equilibria, 1985, 23, 41-58.	1.4	4
220	A theoretical and experimental study of the equation of state of tetrafluoromethane. The Journal of Physical Chemistry, 1985, 89, 4637-4646.	2.9	23
221	Excess enthalpies of binary mixtures of ethylbenzene + n-alkanes. Journal of Chemical & Engineering Data, 1985, 30, 24-26.	1.0	21
222	Thermodynamics of methanol+heptanone solutions. Thermochimica Acta, 1984, 73, 1-16.	1.2	1
223	Vapour—liquid equilibrium of (methanol+a heptanone) at 323.15 K. Thermochimica Acta, 1984, 73, 17-23.	1.2	3
224	Order effects in the excess thermodynamic properties of benzene + alkane mixtures. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 1425.	1.0	19
225	Local composition effect in poly(dimethyl siloxane) solutions: A comparison of two models. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 841-849.	1.0	5
226	Regression of vapor-liquid equilibrium data based on application of the maximum-likelihood principle. Fluid Phase Equilibria, 1983, 12, 217-234.	1.4	38
227	Excess magnitudes for the benzene + n-dodecane system at 298.15 and 323.15 K. Thermochimica Acta, 1983, 65, 69-79.	1.2	11
228	Vapour-liquid equilibrium of (methanol+a heptanone) at 298.15 K. Journal of Chemical Thermodynamics, 1983, 15, 779-783.	1.0	13
229	Excess gibbs energies for the benzene + n-hexadecane system at 298.15 and 323.15 K. Thermochimica Acta, 1982, 56, 199-208.	1.2	16
230	Excess Gibbs energies of (benzene + n-pentadecane) at 298.15 and 323.15 K. Journal of Chemical Thermodynamics, 1982, 14, 983-989.	1.0	22
231	Vapor-liquid equilibria forn-tetradecane-benzene mixtures at 25 and 50�C. Journal of Solution Chemistry, 1982, 11, 823-830.	0.6	12
232	An expression for local composition in polymer-solution thermodynamics. Journal of Polymer Science, Polymer Physics Edition, 1982, 20, 783-791.	1.0	6
233	Nonrandomness Binary Parameters for Polymer Solutions. Macromolecules, 1980, 13, 1508-1513.	2.2	10
234	Development of an Environmentally Friendly Larvicidal Formulation Based on Essential Oil Compound Blend to Control <i>Aedes aegypti</i> Larvae: Correlations between Physicochemical Properties and Insecticidal Activity. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	12