Ronit Mazor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5008050/publications.pdf

Version: 2024-02-01

623734 752698 21 807 14 20 citations h-index g-index papers 21 21 21 967 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Differential TÂcell immune responses to deamidated adeno-associated virus vector. Molecular Therapy - Methods and Clinical Development, 2022, 24, 255-267.	4.1	14
2	In vivo pharmacokinetic enhancement of monomeric Fc and monovalent bispecific designs through structural guidance. Communications Biology, 2021, 4, 1048.	4.4	1
3	Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Frontiers in Immunology, 2020, 11, 1261.	4.8	55
4	Low-Dose Methotrexate Prevents Primary and Secondary Humoral Immune Responses and Induces Immune Tolerance to a Recombinant Immunotoxin. Journal of Immunology, 2018, 200, 2038-2045.	0.8	9
5	Tolerogenic nanoparticles restore the antitumor activity of recombinant immunotoxins by mitigating immunogenicity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E733-E742.	7.1	45
6	Improving the <i>In Vivo</i> Efficacy of an Anti-Tac (CD25) Immunotoxin by <i>Pseudomonas</i> Exotoxin A Domain II Engineering. Molecular Cancer Therapeutics, 2018, 17, 1486-1493.	4.1	14
7	SS1P Immunotoxin Induces Markers of Immunogenic Cell Death and Enhances the Effect of the CTLA-4 Blockade in AE17M Mouse Mesothelioma Tumors. Toxins, 2018, 10, 470.	3.4	23
8	Anti-drug antibodies to LMB-100 are enhanced by mAbs targeting OX40 and CTLA4 but not by mAbs targeting PD1 or PDL-1. Cellular Immunology, 2018, 334, 38-41.	3.0	10
9	Strategies to Reduce the Immunogenicity of Recombinant Immunotoxins. American Journal of Pathology, 2018, 188, 1736-1743.	3.8	52
10	Elimination of murine and human T-cell epitopes in recombinant immunotoxin eliminates neutralizing and anti-drug antibodies in vivo. Cellular and Molecular Immunology, 2017, 14, 432-442.	10.5	33
11	Rational design of low immunogenic anti CD25 recombinant immunotoxin for T cell malignancies by elimination of T cell epitopes in PE38. Cellular Immunology, 2017, 313, 59-66.	3.0	21
12	Role of HLA-DP in the Presentation of Epitopes from the Truncated Bacterial PE38 Immunotoxin. AAPS Journal, 2017, 19, 117-129.	4.4	4
13	Immunogenicity of therapeutic recombinant immunotoxins. Immunological Reviews, 2016, 270, 152-164.	6.0	85
14	Dual B- and T-cell de-immunization of recombinant immunotoxin targeting mesothelin with high cytotoxic activity. Oncotarget, 2016, 7, 29916-29926.	1.8	41
15	Poor correlation between T-cell activation assays and HLA-DR binding prediction algorithms in an immunogenic fragment of Pseudomonas exotoxin A. Journal of Immunological Methods, 2015, 425, 10-20.	1.4	23
16	Recombinant Immunotoxin with T-cell Epitope Mutations That Greatly Reduce Immunogenicity for Treatment of Mesothelin-Expressing Tumors. Molecular Cancer Therapeutics, 2015, 14, 2789-2796.	4.1	34
17	Removing T-cell epitopes with computational protein design. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8577-8582.	7.1	115
18	Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8571-8576.	7.1	104

RONIT MAZOR

#	Article	IF	CITATIONS
19	Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on <i>Pseudomonas </i> exotoxin A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3597-603.	7.1	89
20	Epigenetic changes are induced following exposure of peripheral blood cells to CW 800MHz radiation. , 2011, , .		0
21	Increased Levels of Numerical Chromosome Aberrations after <i>In Vitro</i> Exposure of Human Peripheral Blood Lymphocytes to Radiofrequency Electromagnetic Fields for 72 Hours. Radiation Research, 2008, 169, 28-37.	1.5	35