
Marcos S Buckeridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5007871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource Technology, 2010, 101, 4820-4825.	4.8	326
2	Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology, 2011, 91, 1267-1275.	1.7	291
3	Impacts of climate changes on crop physiology and food quality. Food Research International, 2010, 43, 1814-1823.	2.9	257
4	Elevated CO ₂ increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, Cell and Environment, 2008, 31, 1116-1127.	2.8	219
5	Composition and Structure of Sugarcane Cell Wall Polysaccharides: Implications for Second-Generation Bioethanol Production. Bioenergy Research, 2013, 6, 564-579.	2.2	216
6	Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiology and Biochemistry, 2000, 38, 141-156.	2.8	191
7	Seed Cell Wall Storage Polysaccharides: Models to Understand Cell Wall Biosynthesis and Degradation. Plant Physiology, 2010, 154, 1017-1023.	2.3	182
8	Mixed Linkage (1→3),(1→4)-β-d-Glucans of Grasses. Cereal Chemistry, 2004, 81, 115-127.	1.1	140
9	Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass. PLoS ONE, 2015, 10, e0129275.	1.1	127
10	Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nature Climate Change, 2017, 7, 788-792.	8.1	124
11	Novo método enzimático rápido e sensÃvel de extração e dosagem de amido em materiais vegetais. Hoehnea (revista), 2007, 34, 425-431.	0.2	122
12	Seed storage hemicelluloses as wet-end additives in papermaking. Carbohydrate Polymers, 2003, 52, 367-373.	5.1	115
13	The Mechanism of Synthesis of a Mixed-Linkage (1→3),(1→4)β-d-Glucan in Maize. Evidence for Multiple Sites of Glucosyl Transfer in the Synthase Complex1. Plant Physiology, 1999, 120, 1105-1116.	2.3	113
14	Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol. Bioenergy Research, 2014, 7, 24-35.	2.2	101
15	Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane. Plant Molecular Biology, 2016, 91, 15-35.	2.0	99
16	How cell wall complexity influences saccharification efficiency in <i>Miscanthus sinensis</i> . Journal of Experimental Botany, 2015, 66, 4351-4365.	2.4	82
17	Physico-chemical properties of seed xyloglucans from different sources. Carbohydrate Polymers, 2005, 60, 507-514.	5.1	79
18	Purification and properties of a novel ?-galactosidase or exo-(1 ? 4)-?-d-galactanase from the cotyledons of germinated Lupinus angustifolius L. seeds. Planta, 1994, 192, 502-11.	1.6	73

#	Article	IF	CITATIONS
19	A new family of oligosaccharides from the xyloglucan of Hymenaea courbaril L. (Leguminosae) cotyledons. Carbohydrate Research, 1997, 303, 233-237.	1.1	72
20	Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiology and Biochemistry, 2004, 42, 389-394.	2.8	70
21	Mobilisation of the raffinose family oligosaccharides and galactomannan in germinating seeds of Sesbania marginata Benth. (Leguminosae-Faboideae). Plant Science, 1996, 117, 33-43.	1.7	64
22	Cell wall polysaccharides from fern leaves: Evidence for a mannan-rich Type III cell wall in Adiantum raddianum. Phytochemistry, 2011, 72, 2352-2360.	1.4	63
23	The Biotechnology Roadmap for Sugarcane Improvement. Tropical Plant Biology, 2010, 3, 75-87.	1.0	62
24	The role of air pollution and climate on the growth of urban trees. Science of the Total Environment, 2019, 666, 652-661.	3.9	62
25	Xyloglucan structure and post-germinative metabolism in seeds of Copaifera langsdorfii from savanna and forest populations. Physiologia Plantarum, 1992, 86, 145-151.	2.6	61
26	A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnology for Biofuels, 2014, 7, 115.	6.2	60
27	Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Ducke) under different light intensities. Brazilian Journal of Plant Physiology, 2005, 17, 325-334.	0.5	57
28	Effect of a drought period on the mobilisation of non-structural carbohydrates, photosynthetic efficiency and water status in an epiphytic orchid. Plant Physiology and Biochemistry, 2001, 39, 1009-1016.	2.8	55
29	Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology, 2013, 25, 213-222.	1.1	55
30	Influence of potassium and sodium nutrition on leaf area components in Eucalyptus grandis trees. Plant and Soil, 2013, 371, 19-35.	1.8	53
31	Ethanol from sugarcane in <scp>B</scp> razil: a â€~midway' strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy, 2012, 4, 119-126.	2.5	52
32	Purification ofÂaÂβ-galactosidase from cotyledons ofÂHymenaeaÂcourbaril L. (Leguminosae). Enzyme properties andÂbiological function. Plant Physiology and Biochemistry, 2006, 44, 619-627.	2.8	51
33	Xyloglucan mobilisation in cotyledons of developing plantlets of Hymenaea courbaril L. (Leguminosae-Caesalpinoideae). Plant Science, 2000, 154, 117-126.	1.7	50
34	Breaking the "Glycomic Code―of Cell Wall Polysaccharides May Improve Second-Generation Bioenergy Production from Biomass. Bioenergy Research, 2014, 7, 1065-1073.	2.2	50
35	Interaction between cellulose and storage xyloglucans: the influence of the degree of galactosylation. Carbohydrate Polymers, 2001, 46, 157-163.	5.1	48
36	The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions. Annals of Botany, 2009, 104, 1111-1119.	1.4	48

#	Article	IF	CITATIONS
37	Global environmental changes: setting priorities for Latin American coastal habitats. Global Change Biology, 2013, 19, 1965-1969.	4.2	48
38	Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose. Industrial Crops and Products, 2019, 140, 111657.	2.5	47
39	Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species Alchornea glandulosa under heatwave conditions. Environmental and Experimental Botany, 2019, 158, 28-39.	2.0	47
40	Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33358-33364.	3.3	46
41	Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 461-467.	1.1	45
42	CHANGES IN WHOLE-PLANT METABOLISM DURING GRAIN-FILLING STAGE IN SORGHUM BICOLOR L. (MOENCH) GROWN UNDER ELEVATED CO2 AND DROUGHT. Plant Physiology, 2015, 169, pp.01054.2015.	2.3	45
43	Seed galactomannan in the classification and evolution of the leguminosae. Phytochemistry, 1995, 38, 871-875.	1.4	43
44	Fine structure of a mixed-oligomer storage xyloglucan from seeds of Hymenaea courbaril. Carbohydrate Polymers, 2006, 66, 444-454.	5.1	43
45	Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS ONE, 2017, 12, e0180051.	1.1	41
46	Xyloglucan mobilisation and purification of a (XLLG/XLXG) specific β-galactosidase from cotyledons of Copaifera langsdorffii. Plant Physiology and Biochemistry, 1999, 37, 653-663.	2.8	40
47	The Role of the Storage Carbon of Cotyledons in the Establishment of Seedlings of Hymenaea courbaril Under Different Light Conditions. Annals of Botany, 2004, 94, 819-830.	1.4	40
48	How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass. Journal of Experimental Botany, 2015, 66, 4133-4143.	2.4	40
49	Pectins, Endopolygalacturonases, and Bioenergy. Frontiers in Plant Science, 2016, 7, 1401.	1.7	39
50	Down-regulation of tomato <i>PHYTOL KINASE</i> strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner. Journal of Experimental Botany, 2016, 67, 919-934.	2.4	39
51	"Mas de que te serve saber botânica?". Estudos Avancados, 2016, 30, 177-196.	0.2	38
52	Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renewable Energy, 2020, 147, 2206-2217.	4.3	38
53	Insight into multi-site mechanisms of glycosyl transfer in (1→4)β-d-glycans provided by the cereal mixed-linkage (1→3),(1→4)β-d-glucan synthase. Phytochemistry, 2001, 57, 1045-1053.	1.4	37
54	A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees - Structure and Function, 2013, 27, 25-36.	0.9	37

MARCOS S BUCKERIDGE

#	Article	IF	CITATIONS
55	Will the exceptional productivity of Miscanthus x giganteus increase further under rising atmospheric CO2?. Agricultural and Forest Meteorology, 2013, 171-172, 82-92.	1.9	37
56	Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renewable and Sustainable Energy Reviews, 2021, 148, 111268.	8.2	37
57	The Control of Storage Xyloglucan Mobilization in Cotyledons of Hymenaea courbaril. Plant Physiology, 2004, 135, 287-299.	2.3	36
58	Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. Journal of Experimental Botany, 2013, 64, 2449-2466.	2.4	34
59	Effect of atmospheric CO2 enrichment on the establishment of seedlings of JatobÃi, Hymenaea Courbaril L. (Leguminosae, Caesalpinioideae). Biota Neotropica, 2002, 2, 1-10.	1.0	34
60	Galactomannans as the reserve carbohydrate in legume seeds. Developments in Crop Science, 2000, , 283-316.	0.1	33
61	Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2017, 101, 2893-2903.	1.7	33
62	Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil. Environmental Pollution, 2018, 242, 320-328.	3.7	33
63	Dendrobiochemistry, a missing link to further understand carbon allocation during growth and decline of trees. Trees - Structure and Function, 2017, 31, 1745-1758.	0.9	31
64	Cell wall changes during the formation of aerenchyma in sugarcane roots. Annals of Botany, 2017, 120, 693-708.	1.4	31
65	An actinobacteria lytic polysaccharide monooxygenase acts on both cellulose and xylan to boost biomass saccharification. Biotechnology for Biofuels, 2019, 12, 117.	6.2	31
66	Responses of Senna reticulata, a legume tree from the Amazonian floodplains, to elevated atmospheric CO2 concentration and waterlogging. Trees - Structure and Function, 2014, 28, 1021-1034.	0.9	30
67	Diurnal variation in gas exchange and nonstructural carbohydrates throughout sugarcane development. Functional Plant Biology, 2018, 45, 865.	1.1	30
68	The Role of Exo-(1→4)-β-galactanase in the Mobilization of Polysaccharides from the Cotyledon Cell Walls of Lupinus angustifolius Following Germination. Annals of Botany, 2005, 96, 435-444.	1.4	27
69	Insights on How the Activity of an Endoglucanase Is Affected by Physical Properties of Insoluble Celluloses. Journal of Physical Chemistry B, 2012, 116, 6128-6136.	1.2	27
70	Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato. Plant and Cell Physiology, 2016, 57, 642-653.	1.5	27
71	Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nature Communications, 2021, 12, 4049.	5.8	26
72	Hypoglycemic activity of polysaccharide fractions containing ß-glucans from extracts of Rhynchelytrum repens (Willd.) C.E. Hubb., Poaceae. Brazilian Journal of Medical and Biological Research, 2005, 38, 885-893.	0.7	25

MARCOS S BUCKERIDGE

#	Article	IF	CITATIONS
73	Characterization of sugarcane (Saccharum spp.) leaf senescence: implications for biofuel production. Biotechnology for Biofuels, 2016, 9, 153.	6.2	25
74	Correlation of Apiose Levels and Growth Rates in Duckweeds. Frontiers in Chemistry, 2018, 6, 291.	1.8	25
75	Cellulose crystals in fibrovascular bundles of sugarcane culms: orientation, size, distortion, and variability. Cellulose, 2012, 19, 1507-1515.	2.4	24
76	The control of endopolygalacturonase expression by the sugarcane RAV transcription factor during aerenchyma formation. Journal of Experimental Botany, 2019, 70, 497-506.	2.4	24
77	Temperature-dependent germination and endo-beta -mannanase activity in sesame seeds. Brazilian Journal of Plant Physiology, 2001, 13, 139-148.	0.1	24
78	Galactose branching modulates the action of cellulase on seed storage xyloglucans. Carbohydrate Polymers, 2003, 52, 135-141.	5.1	23
79	Transcriptional profiling of Brazilian <i>Saccharomyces cerevisiae</i> strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Research, 2013, 13, 277-290.	1.1	23
80	Patterns of expression of cell wall related genes in sugarcane. Genetics and Molecular Biology, 2001, 24, 191-198.	0.6	22
81	Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae). Annals of Botany, 2010, 106, 607-616.	1.4	22
82	BioNetStat: A Tool for Biological Networks Differential Analysis. Frontiers in Genetics, 2019, 10, 594.	1.1	22
83	Flavonoids from duckweeds: potential applications in the human diet. RSC Advances, 2020, 10, 44981-44988.	1.7	21
84	The evolution of the Glycomic Codes of extracellular matrices. BioSystems, 2018, 164, 112-120.	0.9	20
85	Isolated and combined effects of elevated CO2 and high temperature on the whole-plant biomass and the chemical composition of soybean seeds. Food Chemistry, 2019, 275, 610-617.	4.2	20
86	Routes to Cellulosic Ethanol. , 2011, , .		19
87	Ãrvores urbanas em São Paulo: planejamento, economia e água. Estudos Avancados, 2015, 29, 85-101.	0.2	19
88	Apoplastic and intracellular plant sugars regulate developmental transitions in witches' broom disease of cacao. Journal of Experimental Botany, 2015, 66, 1325-1337.	2.4	19
89	Nutrient and drought stress: implications for phenology and biomass quality in miscanthus. Annals of Botany, 2019, 124, 553-566.	1.4	19
90	A Highly Glucose Tolerant ß-Glucosidase from Malbranchea pulchella (MpBg3) Enables Cellulose Saccharification. Scientific Reports, 2020, 10, 6998.	1.6	19

#	Article	IF	CITATIONS
91	Do plant cell walls have a code?. Plant Science, 2015, 241, 286-294.	1.7	18
92	Roles of auxin and ethylene in aerenchyma formation in sugarcane roots. Plant Signaling and Behavior, 2018, 13, e1422464.	1.2	18
93	Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. International Journal of Biological Macromolecules, 2019, 136, 1133-1141.	3.6	18
94	Physiological and biochemical characterization of the assai palm (Euterpe oleracea Mart.) during seed germination and seedling growth under aerobic and anaerobic conditions. Revista Arvore, 2010, 34, 1045-4053.	0.5	17
95	The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Applied Microbiology and Biotechnology, 2016, 100, 9133-9144.	1.7	17
96	Short-term responses of soybean roots to individual and combinatorial effects of elevated [CO2] and water deficit. Plant Science, 2019, 280, 283-296.	1.7	17
97	A Halotolerant Endo-1,4-β-Xylanase from Aspergillus clavatus with Potential Application for Agroindustrial Residues Saccharification. Applied Biochemistry and Biotechnology, 2020, 191, 1111-1126.	1.4	17
98	Effects of light stress on the growth of the epiphytic orchid Cattleya forbesii Lindl. X Laelia tenebrosa Rolfe. Revista Brasileira De Botanica, 2002, 25, 229-235.	0.5	16
99	Prospection of Fungal Lignocellulolytic Enzymes Produced from Jatoba (Hymenaea courbaril) and Tamarind (Tamarindus indica) Seeds: Scaling for Bioreactor and Saccharification Profile of Sugarcane Bagasse. Microorganisms, 2021, 9, 533.	1.6	16
100	Carbohydrate composition of ripe pineapple (cv. perola) and the glycemic response in humans. Food Science and Technology, 2010, 30, 282-288.	0.8	15
101	Cell wall hydrolases act in concert during aerenchyma development in sugarcane roots. Annals of Botany, 2019, 124, 1067-1089.	1.4	15
102	On the perceptions and conceptions of tourists with regard to global environmental changes and their consequences for coastal and marine environments: A case study of the northern São Paulo State coast, Brazil. Marine Policy, 2015, 57, 85-92.	1.5	14
103	Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in São Paulo. Environmental Pollution, 2020, 263, 114583.	3.7	14
104	Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector. ACS Sustainable Chemistry and Engineering, 2021, 9, 4293-4295.	3.2	14
105	Characterization of storage cell wall polysaccharides from Brazilian legume seeds and the formation of aqueous two-phase systems. Biomedical Applications, 1996, 680, 255-261.	1.7	13
106	Synthesis of fructans by fructosyltransferase from the tuberous roots of Viguiera discolor (Asteraceae). Brazilian Journal of Medical and Biological Research, 1999, 32, 435-442.	0.7	13
107	Monomer composition of polysaccharides of seed cell walls and the taxonomy of the Vochysiaceae. Phytochemistry, 2000, 55, 581-587.	1.4	13
108	Testa is involved in the control of storage mobilisation in seeds of Sesbania virgata (Cav.) Pers., a tropical legume tree from of the Atlantic Forest. Trees - Structure and Function, 2006, 21, 13-21.	0.9	13

MARCOS S BUCKERIDGE

#	Article	IF	CITATIONS
109	The profile secretion of Aspergillus clavatus: Different pre-treatments of sugarcane bagasse distinctly induces holocellulases for the lignocellulosic biomass conversion into sugar. Renewable Energy, 2021, 165, 748-757.	4.3	13
110	Endo-beta-mannanase from the endosperm of seeds of Sesbania virgata (Cav.) Pers. (Leguminosae): purification, characterisation and its dual role in germination and early seedling growth. Brazilian Journal of Plant Physiology, 2006, 18, 269-280.	0.5	13
111	Effect of abscisic acid on the mobilisation of galactomannan and embryo development of Sesbania virgata (Cav.) Pers. (Leguminosae - Faboideae). Revista Brasileira De Botanica, 2002, 25, 303.	0.5	12
112	Cell wall hydrolases in the seeds of Euphorbia heterophylla L. during germination and early seedling development. Brazilian Journal of Plant Physiology, 2003, 15, 135-143.	0.5	12
113	Unpacking Brazil's Leadership in the Global Biofuels Arena: Brazilian Ethanol Diplomacy in Africa. Global Environmental Politics, 2016, 16, 127-150.	1.7	12
114	High Saccharification, Low Lignin, and High Sustainability Potential Make Duckweeds Adequate as Bioenergy Feedstocks. Bioenergy Research, 2021, 14, 1082-1092.	2.2	12
115	Effect of abscisic acid on galactomannan degradation and endo-β-mannanase activity in seeds of Sesbania virgata (Cav.) Pers. (Leguminosae). Trees - Structure and Function, 2006, 20, 669-678.	0.9	11
116	Using Natural Plant Cell Wall Degradation Mechanisms to Improve Second Generation Bioethanol. , 2014, , 211-230.		11
117	Central and South America. , 0, , 1499-1566.		11
118	ls guava phenolic metabolism influenced by elevated atmospheric CO2?. Environmental Pollution, 2015, 196, 483-488.	3.7	11
119	Improved tree-ring visualization using autofluorescence. Dendrochronologia, 2019, 55, 33-42.	1.0	11
120	Characterization of an extracellular endopolygalacturonase from the saprobe Mucor ramosissimus Samutsevitsch and its action as trigger of defensive response in tropical plants. Mycopathologia, 2006, 162, 337-346.	1.3	10
121	Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril L Journal of Experimental Botany, 2009, 60, 1191-1206.	2.4	10
122	Eucalyptus Cell Wall Architecture: Clues for Lignocellulosic Biomass Deconstruction. Bioenergy Research, 2016, 9, 969-979.	2.2	10
123	Topological assessment of metabolic networks reveals evolutionary information. Scientific Reports, 2018, 8, 15918.	1.6	10
124	Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. Frontiers in Plant Science, 2020, 11, 617020.	1.7	10
125	Um novo ecossistema: florestas urbanas construÃdas pelo Estado e pelos ativistas. Estudos Avancados, 2019, 33, 81-102.	0.2	10
126	Stem and leaf functional traits allow successional classification in six pioneer and non-pioneer tree species in Tropical Moist Broadleaved Forests. Ecological Indicators, 2020, 113, 106254.	2.6	9

0.2

6

#	Article	IF	CITATIONS
127	Intra-annual oxygen isotopes in the tree rings record precipitation extremes and water reservoir levels in the Metropolitan Area of São Paulo, Brazil. Science of the Total Environment, 2020, 743, 140798.	3.9	9
128	Melatonin-Index as a biomarker for predicting the distribution of presymptomatic and asymptomatic SARS-CoV-2 carriers. Melatonin Research, 2021, 4, 189-205.	0.7	9
129	Saccharification of different sugarcane bagasse varieties by enzymatic cocktails produced by Mycothermus thermophilus and Trichoderma reesei RP698 cultures in agro-industrial residues. Energy, 2021, 226, 120360.	4.5	9
130	Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS Bioengineering, 2016, 4, 1-11.	0.6	9
131	Duckweeds as Promising Food Feedstocks Globally. Agronomy, 2022, 12, 796.	1.3	9
132	Storage proteins and cell wall mobilisation in seeds of Sesbania virgata (Cav.) Pers. (Leguminosae). Trees - Structure and Function, 2010, 24, 675-684.	0.9	8
133	Physical and chemical characterization of the 2019 "black rain―event in the Metropolitan Area of São Paulo, Brazil. Atmospheric Environment, 2021, 248, 118229.	1.9	8
134	Anatomical and biochemical changes in the composition of developing seed coats of annatto (Bixa) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf !
135	Availability peak of caloric fruits coincides with energy-demanding seasons for resident and non-breeding birds in restinga, an ecosystem related to the Atlantic forest, Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 647-655.	0.6	7
136	Reply to: Brazilian ethanol expansion subject to limitations. Nature Climate Change, 2019, 9, 211-212.	8.1	7
137	Disassembling the Glycomic Code of Sugarcane Cell Walls to Improve Second-Generation Bioethanol Production. , 2019, , 31-43.		7
138	Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Conversion and Biorefinery, 2023, 13, 1163-1174.	2.9	7
139	Climate drivers of tree fall on the streets of São Paulo, Brazil. Trees - Structure and Function, 2021, 35, 1807-1815.	0.9	7
140	Nutritional reserves of Vochysiaceae seeds: chemical diversity and potential economic uses. Anais Da Academia Brasileira De Ciencias, 2011, 83, 523-531.	0.3	6
141	Regulated deficit irrigation benefits the production of container-grown citrus nursery trees. Trees - Structure and Function, 2018, 32, 1751-1766.	0.9	6

143	Biochemical composition of the pericarp cell wall of popcorn inbred lines with different popping expansion. Current Research in Food Science, 2022, 5, 102-106.	2.7	6

Análise sistêmica do municÃpio de São Paulo e suas implicações para o avanço dos casos de Covid-19. Estudos Avancados, 2020, 34, 157-174.

142

¹⁴⁴Detecting tree and wire entanglements with deep learning. Trees - Structure and Function, 2023, 37,
147-159.0.96

#	Article	IF	CITATIONS
145	SUGARCANE AND CLIMATE CHANGE: EFFECTS OF CO2 ON POTENTIAL GROWTH AND DEVELOPMENT. Acta Horticulturae, 2008, , 331-336.	0.1	5
146	Thermal degradation of leaves from the Amazon rainforest litter considering non-structural, structural carbohydrates and lignin composition. Bioresource Technology Reports, 2020, 11, 100490.	1.5	5
147	Newly identified miRNAs may contribute to aerenchyma formation in sugarcane roots. Plant Direct, 2020, 4, e00204.	0.8	5
148	Increased Malbranchea pulchella β-glucosidase production and its application in agroindustrial residue hydrolysis: A research based on experimental designs. Biotechnology Reports (Amsterdam,) Tj ETQqO 0 C) rg B T /Ove	erlosck 10 Tf 5
149	The Effect of Sugarcane Straw Aging in the Field on Cell Wall Composition. Frontiers in Plant Science, 2021, 12, 652168.	1.7	5
150	Governança da água na Região Metropolitana de São Paulo - desafios à luz das mudanças climáticas. Estudos Avancados, 2021, 35, 209-226.	0.2	5
151	Xyloglucan structure and post-germinative metabolism in seeds of Copaifera langsdorfii from savanna and forest populations. Physiologia Plantarum, 1992, 86, 145-151.	2.6	5
152	Sustentabilidade urbana: dimensões conceituais e instrumentos legais de implementação. Estudos Avancados, 2019, 33, 61-80.	0.2	5
153	Axillary bud development in pineapple nodal segments correlates with changes on cell cycle gene expression, hormone level, and sucrose and glutamate contents. In Vitro Cellular and Developmental Biology - Plant, 2010, 46, 281-288.	0.9	4
154	Cell-to-cell trafficking patterns in cell lines of Araucaria angustifolia (Brazilian pine) with contrasting embryogenic potential. Plant Cell, Tissue and Organ Culture, 2022, 148, 81-93.	1.2	4
155	Evaluation of Setaria viridis physiological and gene expression responses to distinct water-deficit conditions. Biotechnology Research and Innovation, 2019, 3, 42-58.	0.3	4
156	Tecnologias e sustentabilidade nas cidades. Estudos Avancados, 2019, 33, 137-150.	0.2	4
157	Seed ontogeny and endosperm chemical analysis in Smilax polyantha (Smilacaceae). Australian Journal of Botany, 2012, 60, 693.	0.3	3
158	Senna reticulata: a Viable Option for Bioenergy Production in the Amazonian Region. Bioenergy Research, 2021, 14, 91-105.	2.2	3
159	Starch turnover is stimulated by nitric oxide in embryogenic cultures of Araucaria angustifolia. Plant Cell, Tissue and Organ Culture, 2021, 147, 583-597.	1.2	3
160	Ciência e polÃticas públicas nas cidades: revelações da pandemia da Covid-19. Estudos Avancados, 2020, 34, 141-156.	0.2	3
161	Ten Simple Rules for Developing a Successful Research Proposal in Brazil. PLoS Computational Biology, 2017, 13, e1005289.	1.5	3
162	Importance of Meta-analysis in Studies Involving Plant Responses to Climate Change in Brazil. Lecture Notes in Computer Science, 2020, , 221-234.	1.0	3

#	Article	IF	CITATIONS
163	Cell wall polysaccharides from cell suspension cultures of the Atlantic Forest tree Rudgea jasminoides (Rubiaceae). Trees - Structure and Function, 2010, 24, 713-722.	0.9	2
164	Sugarcane Cell Wall Structure and Degradation: From Monosaccharide Analyses to the Glycomic Code. , 2017, , 7-19.		2
165	Policy and Diplomacy in the Production of Second Generation Ethanol in Brazil: International Relations with the EU, the USA and Africa. , 2017, , 197-212.		2
166	Will climate change shift carbon allocation and stem hydraulics? Insights on a systemic view of carbon- and water-related wood traits in an anysohydric tropical tree species (Hymenaea courbaril,) Tj ETQq0 0 C) rg BT /Ov	erlæck 10 Tf 5
167	Global analysis of the infection by COVID-19. Ambiente & Sociedade, 0, 23, .	0.5	2
168	Diurnal changes in storage carbohydrate metabolism in cotyledons of the tropical tree Hymenaea courbaril L. (Leguminosae). Revista Brasileira De Botanica, 2012, 35, 347-355.	0.5	2
169	Selective xyloglucan oligosaccharide hydrolysis by a GH31 α-xylosidase from Escherichia coli. Carbohydrate Polymers, 2022, 284, 119150.	5.1	2
170	Bioinformatic analyses to uncover genes involved in trehalose metabolism in the polyploid sugarcane. Scientific Reports, 2022, 12, 7516.	1.6	2
171	Biosynthesisin vitroof high-molecular-mass fructan by cell-free extracts from tuberous roots ofViguiera discolor(Asteraceae). New Phytologist, 1997, 136, 53-60.	3.5	1
172	Matrix Discriminant Analysis Evidenced Surface-Lithium as an Important Factor to Increase the Hydrolytic Saccharification of Sugarcane Bagasse. Molecules, 2019, 24, 3614.	1.7	1
173	ROUTES FOR CELLULOSIC ETHANOL IN BRAZIL. , 0, , 365-380.		1
174	Isothermal seed germination of Adenanthera pavonina. Revista Brasileira De Botanica, 2012, 35, 401-408.	0.5	1
175	NDP-Sugar Pathways Overview of Spirodela polyrhiza and Their Relevance for Bioenergy and Biorefinery. Bioenergy Research, 0, , 1.	2.2	1
176	Isolamento de oligossacarÃdeos de xiloglucano de dicotiledôneas através de hidrólise enzimática e cromatografia de exclusão molecular. Revista Brasileira De Botanica, 2006, 29, 391.	0.5	0
177	Polyethylene glycol damages grafted citrus plants based on biometric, physiological,and biochemical responses. Revista Brasileira De Fruticultura, 2018, 40, .	0.2	0
178	Sonia Dietrich: a life dedicated to science. Revista Brasileira De Botanica, 2012, 35, 00-00.	0.5	0