
Hai-Bo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5007650/publications.pdf Version: 2024-02-01

Ηλι-Βο Ζμλο

#	Article	IF	CITATIONS
1	Excellent Electromagnetic Absorption Capability of Ni/Carbon Based Conductive and Magnetic Foams Synthesized via a Green One Pot Route. ACS Applied Materials & Interfaces, 2016, 8, 1468-1477.	4.0	241
2	Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. Journal of Materials Chemistry C, 2019, 7, 441-448.	2.7	238
3	New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chemical Engineering Journal, 2018, 336, 622-632.	6.6	228
4	Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.	11.1	209
5	Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. Journal of Hazardous Materials, 2019, 371, 529-539.	6.5	166
6	Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. ACS Applied Materials & Interfaces, 2016, 8, 32557-32564.	4.0	157
7	Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polymer Degradation and Stability, 2009, 94, 625-631.	2.7	154
8	Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chemical Engineering Journal, 2021, 410, 128361.	6.6	142
9	Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. Journal of Hazardous Materials, 2018, 360, 651-660.	6.5	139
10	Mechanically strong and flame-retardant epoxy resins with anti-corrosion performance. Composites Part B: Engineering, 2020, 193, 108019.	5.9	127
11	A flame-retardant-free and thermo-cross-linkable copolyester: Flame-retardant and anti-dripping mode of action. Polymer, 2014, 55, 2394-2403.	1.8	124
12	Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 7012-7019.	3.2	119
13	Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric. Chemical Engineering Journal, 2021, 424, 130556.	6.6	117
14	Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer, 2018, 153, 616-625.	1.8	113
15	Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. ACS Applied Materials & Interfaces, 2017, 9, 42258-42265.	4.0	104
16	Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. Journal of Hazardous Materials, 2019, 375, 61-69.	6.5	103
17	Design and Synthesis of PETâ€Based Copolyesters with Flameâ€Retardant and Antidripping Performance. Macromolecular Rapid Communications, 2017, 38, 1700451.	2.0	102
18	Banana Leaflike C-Doped MoS ₂ Aerogels toward Excellent Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2020, 12, 26301-26312.	4.0	100

Наі-Во Zhao

#	Article	IF	CITATIONS
19	Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. Nano-Micro Letters, 2022, 14, 76.	14.4	99
20	Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal Insulation, and Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021, 13, 26505-26514.	4.0	94
21	Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. Journal of Alloys and Compounds, 2018, 736, 71-79.	2.8	88
22	Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chemical Engineering Journal, 2019, 361, 1245-1254.	6.6	83
23	High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound. Composites Part B: Engineering, 2021, 211, 108640.	5.9	80
24	Flame-retarded thermoplastic polyurethane elastomer: From organic materials to nanocomposites and new prospects. Chemical Engineering Journal, 2021, 417, 129314.	6.6	80
25	A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. Journal of Materials Chemistry, 2012, 22, 19849.	6.7	78
26	Biomass-Based Mechanically Strong and Electrically Conductive Polymer Aerogels and Their Application for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 9917-9924.	4.0	76
27	Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. Journal of Hazardous Materials, 2021, 403, 123977.	6.5	75
28	Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications. Composites Part B: Engineering, 2021, 225, 109309.	5.9	75
29	A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Composites Part B: Engineering, 2020, 185, 107797.	5.9	70
30	3D printable robust shape memory PET copolyesters with fire safety <i>via</i> π-stacking and synergistic crosslinking. Journal of Materials Chemistry A, 2019, 7, 17037-17045.	5.2	69
31	Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment. Chemical Engineering Journal, 2020, 399, 125698.	6.6	68
32	A green, durable and effective flame-retardant coating for expandable polystyrene foams. Chemical Engineering Journal, 2022, 440, 135807.	6.6	68
33	Multi-stimuli sensitive supramolecular hydrogel formed by host–guest interaction between PNIPAM-Azo and cyclodextrin dimers. RSC Advances, 2014, 4, 4955.	1.7	66
34	Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustainable Chemistry and Engineering, 2019, 7, 11582-11592.	3.2	62
35	Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon, 2021, 183, 205-215.	5.4	61
36	Porous carbon materials for microwave absorption. Materials Advances, 2020, 1, 2631-2645.	2.6	60

Наі-Во Zhao

#	Article	IF	CITATIONS
37	A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: Self-extinguishing behavior and mechanism. Polymer Degradation and Stability, 2018, 153, 192-200.	2.7	59
38	Porous CoNi nanoalloy@N-doped carbon nanotube composite clusters with ultra-strong microwave absorption at a low filler loading. Journal of Materials Chemistry C, 2020, 8, 13712-13722.	2.7	58
39	On controlling aerogel microstructure by freeze casting. Composites Part B: Engineering, 2019, 173, 107036.	5.9	56
40	Temperature-Responsive Intumescent Chemistry toward Fire Resistance and Super Thermal Insulation under Extremely Harsh Conditions. Chemistry of Materials, 2021, 33, 6018-6028.	3.2	51
41	Porous carbon/Fe composites from waste fabric for high-efficiency electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 126, 266-274.	5.6	51
42	Magnetic and Conductive Ni/Carbon Aerogels toward High-Performance Microwave Absorption. Industrial & Engineering Chemistry Research, 2018, 57, 202-211.	1.8	50
43	An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. Journal of Materials Chemistry A, 2020, 8, 18698-18706.	5.2	49
44	Multifunctional Photothermal Conversion Nanocoatings Toward Highly Efficient and Safe High-Viscosity Oil Cleanup Absorption. ACS Applied Materials & Interfaces, 2021, 13, 11948-11957.	4.0	46
45	Novel polyamide 6 composites based on Schiff-base containing phosphonate oligomer: High flame retardancy, great processability and mechanical property. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106423.	3.8	45
46	Novel Flame-Retardant and Antidripping Branched Polyesters Prepared via Phosphorus-Containing Ionic Monomer as End-Capping Agent. Industrial & Engineering Chemistry Research, 2010, 49, 4190-4196.	1.8	42
47	Novel crosslinkable epoxy resins containing phenylacetylene and azobenzene groups: From thermal crosslinking to flame retardance. Polymer Degradation and Stability, 2015, 122, 66-76.	2.7	42
48	Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption. Journal of Materials Science and Technology, 2022, 130, 157-165.	5.6	39
49	Multifunctional protective aerogel with superelasticity over â~'196 to 500 °C. Nano Research, 2022, 15, 7797-7805.	5.8	39
50	Self-cross-linked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy. Carbohydrate Polymers, 2019, 206, 609-615.	5.1	36
51	Durable flame-retardant cotton fabrics with tannic acid complexed by various metal ions. Polymer Degradation and Stability, 2022, 201, 109997.	2.7	35
52	Ultralight Biomass Aerogels with Multifunctionality and Superelasticity Under Extreme Conditions. ACS Applied Materials & Interfaces, 2021, 13, 59231-59242.	4.0	32
53	A solution-phase synthesis method to prepare Pd-doped carbon aerogels for hydrogen storage. RSC Advances, 2015, 5, 20966-20971.	1.7	30
54	Ultralow-density carbon foam composites with bean-like Co-embedded carbon nanotube whiskers towards high-performance microwave absorption. Journal of Alloys and Compounds, 2021, 863, 158090.	2.8	30

Наі-Во Zhao

#	Article	IF	CITATIONS
55	P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Composites Part B: Engineering, 2022, 238, 109944.	5.9	30
56	Eco-friendly synergistic cross-linking flame-retardant strategy with smoke and melt-dripping suppression for condensation polymers. Composites Part B: Engineering, 2021, 211, 108664.	5.9	29
57	Block self-cross-linkable poly(ethylene terephthalate) copolyester via solid-state polymerization: Crystallization, cross-linking, and flame retardance. Polymer, 2015, 70, 68-76.	1.8	27
58	Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins. European Polymer Journal, 2022, 167, 111075.	2.6	23
59	An Effective Green Porous Structural Adhesive for Thermal Insulating, Flame-Retardant, and Smoke-Suppressant Expandable Polystyrene Foam. Engineering, 2022, 17, 151-160.	3.2	23
60	Poly(vinyl alcohol)/clay aerogel composites with enhanced flame retardancy. RSC Advances, 2016, 6, 109809-109814.	1.7	18
61	A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. Journal of Hazardous Materials, 2022, 436, 129272.	6.5	15
62	A novel phosphorus-containing poly(1,4-cyclohexylenedimethylene terephthalate) copolyester: Synthesis, thermal stability, flammability and pyrolysis behavior. Polymer Degradation and Stability, 2014, 108, 12-22.	2.7	14
63	Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application. Nanomaterials, 2018, 8, 394.	1.9	14
64	Enhanced Photothermal Effect in Ultralow-Density Carbon Aerogels with Microporous Structures for Facile Optical Ignition Applications. ACS Applied Materials & Interfaces, 2019, 11, 7250-7260.	4.0	14
65	Freestanding monolithic Ni aerogel with large surface areas from cellulose aerogel templates. Materials Letters, 2017, 196, 296-299.	1.3	11
66	Flame-retardant nanocoating towards high-efficiency suppression of smoke and toxic gases for polymer foam. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107021.	3.8	11
67	Metalâ€phenolic networks: A biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy. Journal of Applied Polymer Science, 2019, 136, 47243.	1.3	10
68	Eco-friendly and durable flame-retardant coating for cotton fabrics based on dynamic coordination of Ca2+-tannin acid. Progress in Organic Coatings, 2022, 170, 106964.	1.9	9
69	Effects of Gamma Irradiation on Clay Membrane with Poly(vinyl alcohol) for Fire Retardancy. Industrial & Engineering Chemistry Research, 2015, 54, 10740-10746.	1.8	8
70	Targeted Copolymerization in Amorphous Regions for Constructing Crystallizable Functionalized Copolymers. Macromolecules, 2021, 54, 4412-4422.	2.2	7
71	A titanium dioxide–carbon nanotube hybrid to simultaneously achieve the mechanical enhancement of natural rubber and its stability under extreme frictional conditions. Materials Advances, 2021, 2, 2408-2418.	2.6	4
72	A Phosphorus-Nitrogen-Carbon Synergistic Nanolayered Flame Retardant for Polystyrene. Polymers, 2022, 14, 2055.	2.0	2