
Niloofar Bazazzadegan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5007639/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exome sequencing utility in defining the genetic landscape of hearing loss and novelâ€gene discovery in Iran. Clinical Genetics, 2021, 100, 59-78.	1.0	4
2	<i>CEP104</i> and <i>CEP290</i> ; Genes with Ciliary Functions Cause Intellectual Disability in Multiple Families. Archives of Iranian Medicine, 2021, 24, 364-373.	0.2	3
3	G130V de novo mutation in an Iranian pedigree with nonsyndromic hearing loss without palmoplantar keratoderma. International Journal of Pediatric Otorhinolaryngology, 2019, 126, 109607.	0.4	1
4	Brief Report of Variants Detected in Hereditary Hearing Loss Cases in Iran over a 3-Year Period. Iranian Journal of Public Health, 2019, 48, 1910-1915.	0.3	1
5	<i>CNKSR1</i> gene defect can cause syndromic autosomal recessive intellectual disability. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 691-699.	1.1	4
6	Correlation between important genes of mTOR pathway (PI3K and KIT) in Iranian women with sporadic breast cancer. Medical Journal of the Islamic Republic of Iran, 2018, 32, 789-793.	0.9	6
7	Effects of Herbal Compound (IMOD) on Behavior and Expression of Alzheimer's Disease Related Genes in Streptozotocin-Rat Model of Sporadic Alzheimer's Disease. Advanced Pharmaceutical Bulletin, 2017, 7, 491-494.	0.6	7
8	Effects of Ectoine on Behavior and Candidate Genes Expression in ICV-STZ Rat Model of Sporadic Alzheimer's Disease. Advanced Pharmaceutical Bulletin, 2017, 7, 629-636.	0.6	5
9	The Effects of Extract on Expression of Genes in the Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. Avicenna Journal of Medical Biotechnology, 2017, 9, 133-137.	0.2	5
10	Heterogeneity of Hereditary Hearing Loss in Iran: a Comprehensive Review. Archives of Iranian Medicine, 2016, 19, 720-728.	0.2	18
11	Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. Journal of Medical Genetics, 2015, 52, 823-829.	1.5	87
12	A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability. European Journal of Human Genetics, 2015, 23, 331-336.	1.4	22
13	A novel mutation of the USH2C (GPR98) gene in an Iranian family with Usher syndrome type II. Journal of Genetics, 2014, 93, 837-841.	0.4	14
14	Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic Deafness Variants. American Journal of Human Genetics, 2014, 95, 445-453.	2.6	137
15	The spectrum of GJB2 mutations in the Iranian population with non-syndromic hearing loss—A twelve year study. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 1164-1174.	0.4	38
16	Spectrum of GJB2 (Cx26) gene mutations in Iranian Azeri patients with nonsyndromic autosomal recessive hearing loss. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 268-271.	0.4	24
17	A comprehensive study to determine heterogeneity of autosomal recessive nonsyndromic hearing loss in Iran. American Journal of Medical Genetics, Part A, 2012, 158A, 2485-2492.	0.7	55
18	Screening for <i>MYO15A</i> gene mutations in autosomal recessive nonsyndromic, <i>GJB2</i> negative Iranian deaf population. American Journal of Medical Genetics, Part A, 2012, 158A, 1857-1864.	0.7	54

#	Article	IF	CITATIONS
19	Two Iranian families with a novel mutation in <i>GJB2</i> causing autosomal dominant nonsyndromic hearing loss. American Journal of Medical Genetics, Part A, 2011, 155, 1202-1211.	0.7	9
20	Did the <i>GJB2</i> 35delG mutation originate in Iran?. American Journal of Medical Genetics, Part A, 2011, 155, 2453-2458.	0.7	15
21	Clinical Application of Screening for GJB2 Mutations before Cochlear Implantation in a Heterogeneous Population with High Rate of Autosomal Recessive Nonsyndromic Hearing Loss. Genetics Research International, 2011, 2011, 1-6.	2.0	6
22	Mutations in <i>TMC1</i> are a Common Cause of DFNB7/11 Hearing Loss in the Iranian Population. Annals of Otology, Rhinology and Laryngology, 2010, 119, 830-835.	0.6	29
23	A large deletion in GPR98 causes type IIC Usher syndrome in male and female members of an Iranian family. Journal of Medical Genetics, 2009, 46, 272-276.	1.5	36
24	Identification of SLC26A4 gene mutations in Iranian families with hereditary hearing impairment. European Journal of Pediatrics, 2009, 168, 651-653.	1.3	30
25	GJB2 mutations in Baluchi population. Journal of Genetics, 2008, 87, 195-197.	0.4	17
26	GJB2 mutations: Passage through Iran. American Journal of Medical Genetics, Part A, 2005, 133A, 132-137.	0.7	77