
Suman Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5007507/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta, 2006, 559, 15-24.	2.6	306
2	PDMS microfluidics: A mini review. Journal of Applied Polymer Science, 2020, 137, 48958.	1.3	239
3	Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Analytica Chimica Acta, 2007, 605, 175-184.	2.6	212
4	Electroosmosis-modulated peristaltic transport in microfluidic channels. Physics of Fluids, 2016, 28, .	1.6	125
5	Dynamics of capillary flow of blood into a microfluidic channel. Lab on A Chip, 2005, 5, 421.	3.1	115
6	Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux. International Journal of Heat and Mass Transfer, 2013, 67, 1151-1162.	2.5	113
7	An enthalpy-based hybrid lattice-Boltzmann method for modelling solid–liquid phase transition in the presence of convective transport. Journal of Fluid Mechanics, 2007, 592, 155-175.	1.4	112
8	Microchannel flow control through a combined electromagnetohydrodynamic transport. Journal Physics D: Applied Physics, 2006, 39, 5364-5371.	1.3	111
9	Augmentation of peristaltic microflows through electro-osmotic mechanisms. Journal Physics D: Applied Physics, 2006, 39, 5356-5363.	1.3	110
10	A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes. Lab on A Chip, 2014, 14, 1661-1664.	3.1	109
11	A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 351, 359-367.	0.9	104
12	Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit. Physical Review E, 2008, 77, 037303.	0.8	82
13	Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface. Journal of Fluid Mechanics, 2007, 573, 247-263.	1.4	81
14	Energy Transfer through Streaming Effects in Time-Periodic Pressure-Driven Nanochannel Flows with Interfacial Slip. Langmuir, 2010, 26, 581-590.	1.6	80
15	Capillarity-driven blood plasma separation on paper-based devices. Analyst, The, 2015, 140, 6473-6476.	1.7	80
16	Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter, 2016, 12, 5968-5978.	1.2	80
17	Electrokinetically modulated peristaltic transport of power-law fluids. Microvascular Research, 2016, 103, 41-54.	1.1	80
18	Analytical solutions of Nusselt number for thermally fully developed flow in microtubes under a combined action of electroosmotic forces and imposed pressure gradients. International Journal of Heat and Mass Transfer, 2006, 49, 810-813.	2.5	78

#	Article	IF	CITATIONS
19	Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat and Mass Transfer, 2009, 45, 1323-1333.	1.2	78
20	Steric-Effect Induced Alterations in Streaming Potential and Energy Transfer Efficiency of Non-Newtonian Fluids in Narrow Confinements. Langmuir, 2011, 27, 12243-12252.	1.6	75
21	Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Applied Physics Letters, 2012, 101, 043905.	1.5	72
22	Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels. Physics of Fluids, 2008, 20, .	1.6	71
23	Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices. Analytica Chimica Acta, 2014, 838, 64-75.	2.6	70
24	Effect of Conductivity Variations within the Electric Double Layer on the Streaming Potential Estimation in Narrow Fluidic Confinements. Langmuir, 2010, 26, 11589-11596.	1.6	69
25	Semi-analytical solutions for electroosmotic flows with interfacial slip in microchannels of complex cross-sectional shapes. Microfluidics and Nanofluidics, 2011, 11, 255-267.	1.0	68
26	Electrokinetics with "paper-and-pencil―devices. Lab on A Chip, 2012, 12, 4026.	3.1	66
27	Uniform electric-field-induced lateral migration of a sedimenting drop. Journal of Fluid Mechanics, 2016, 792, 553-589.	1.4	66
28	Rapid mixing with highâ€ŧhroughput in a semiâ€active semiâ€passive micromixer. Electrophoresis, 2017, 38, 1310-1317.	1.3	66
29	Electrical Power Generation from Wet Textile Mediated by Spontaneous Nanoscale Evaporation. Nano Letters, 2019, 19, 7191-7200.	4.5	66
30	Analytical Solution for Thermally Fully Developed Combined Electroosmotic and Pressure-Driven Flows in Narrow Confinements With Thick Electrical Double Layers. Journal of Heat Transfer, 2011, 133, .	1.2	65
31	Studies on Thermal Stratification Phenomenon in LH2Storage Vessel. Heat Transfer Engineering, 2004, 25, 54-66.	1.2	64
32	Semi-analytical solution of the extended Graetz problem for combined electroosmotically and pressure-driven microchannel flows with step-change in wall temperature. International Journal of Heat and Mass Transfer, 2008, 51, 4875-4885.	2.5	63
33	Generalized Model for Time Periodic Electroosmotic Flows with Overlapping Electrical Double Layers. Langmuir, 2007, 23, 12421-12428.	1.6	62
34	An enthalpy-source based lattice Boltzmann model for conduction dominated phase change of pure substances. International Journal of Thermal Sciences, 2008, 47, 552-559.	2.6	62
35	Generalization of Interfacial Electrohydrodynamics in the Presence of Hydrophobic Interactions in Narrow Fluidic Confinements. Physical Review Letters, 2008, 100, 097801.	2.9	62
36	Thermodynamics of premixed combustion in a heat recirculating micro combustor. Energy, 2014, 68, 510-518.	4.5	62

#	Article	IF	CITATIONS
37	Modeling of coupled momentum, heat and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients. Microfluidics and Nanofluidics, 2006, 2, 37-49.	1.0	61
38	Steric effect and slipâ€modulated energy transfer in narrow fluidic channels with finite aspect ratios. Electrophoresis, 2010, 31, 843-849.	1.3	61
39	THREE-DIMENSIONAL COMPUTATIONAL MODELING OF MOMENTUM, HEAT, AND MASS TRANSFER IN A LASER SURFACE ALLOYING PROCESS. Numerical Heat Transfer; Part A: Applications, 2002, 42, 307-326.	1.2	60
40	Double layer overlap in ac electroosmosis. European Journal of Mechanics, B/Fluids, 2008, 27, 297-308.	1.2	60
41	Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Physical Review E, 2011, 84, 012501.	0.8	60
42	Electro-osmosis of superimposed fluids in the presence of modulated charged surfaces in narrow confinements. Journal of Fluid Mechanics, 2015, 776, 390-429.	1.4	60
43	Modelling of transport phenomena in laser surface alloying with distributed species mass source. International Journal of Heat and Fluid Flow, 2002, 23, 298-307.	1.1	59
44	Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements. Physical Review E, 2013, 88, 023022.	0.8	59
45	Towards a generalized representation of surface effects on pressure-driven liquid flow in microchannels. Applied Physics Letters, 2007, 90, 034108.	1.5	56
46	Order Parameter Modeling of Fluid Dynamics in Narrow Confinements Subjected to Hydrophobic Interactions. Physical Review Letters, 2007, 99, 094504.	2.9	56
47	Anomalous Electrical Conductivity of Nanoscale Colloidal Suspensions. ACS Nano, 2008, 2, 2029-2036.	7.3	56
48	Analysis of micromixing of non-Newtonian fluids driven by alternating current electrothermal flow. Journal of Non-Newtonian Fluid Mechanics, 2017, 247, 123-131.	1.0	56
49	Modelling of turbulent molten pool convection in laser welding of a copper–nickel dissimilar couple. International Journal of Heat and Mass Transfer, 2007, 50, 1805-1822.	2.5	54
50	Design and Optimization of Single-Phase Liquid Cooled Microchannel Heat Sink. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 876-886.	1.4	54
51	Fabricating Paper Based Devices Using Correction Pens. Scientific Reports, 2019, 9, 1752.	1.6	54
52	Coalescence dynamics of unequal sized drops. Physics of Fluids, 2019, 31, 012105.	1.6	54
53	Transverse electrodes for improved DNA hybridization in microchannels. AICHE Journal, 2007, 53, 1086-1099.	1.8	53
54	Traction force microscopy on-chip: shear deformation of fibroblast cells. Lab on A Chip, 2008, 8, 1308.	3.1	53

4

#	Article	IF	CITATIONS
55	Effects of entrance region transport processes on free convection slip flow in vertical microchannels with isothermally heated walls. International Journal of Heat and Mass Transfer, 2007, 50, 1248-1254.	2.5	52
56	Ultra-low-cost â€~paper-and-pencil' device for electrically controlled micromixing of analytes. Microfluidics and Nanofluidics, 2015, 19, 375-383.	1.0	52
57	Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements. Physics of Fluids, 2015, 27, .	1.6	52
58	Numerical Investigation on Role of Bottom Gas Stirring in Controlling Thermal Stratification in Steel Ladles. ISIJ International, 2004, 44, 537-546.	0.6	51
59	A novel modeling and simulation technique of photo–thermal interactions between lasers and living biological tissues undergoing multiple changes in phase. Computers in Biology and Medicine, 2005, 35, 447-462.	3.9	51
60	Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization. Physical Review E, 2012, 85, 051508.	0.8	51
61	Analytical solutions for the rate of DNA hybridization in a microchannel in the presence of pressure-driven and electroosmotic flows. Sensors and Actuators B: Chemical, 2006, 114, 957-963.	4.0	50
62	An Enthalpy Model for Simulation of Dendritic Growth. Numerical Heat Transfer, Part B: Fundamentals, 2006, 50, 59-78.	0.6	48
63	Predicting microscale gas flows and rarefaction effects through extended Navier–Stokes–Fourier equations from phoretic transport considerations. Microfluidics and Nanofluidics, 2010, 9, 831-846.	1.0	48
64	Electrokinetically induced alterations in dynamic response of viscoelastic fluids in narrow confinements. Physical Review E, 2012, 85, 056302.	0.8	48
65	Derivations of extended Navier-Stokes equations from upscaled molecular transport considerations for compressible ideal gas flows: Towards extended constitutive forms. Physics of Fluids, 2007, 19, .	1.6	46
66	Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena. Journal of Non-Newtonian Fluid Mechanics, 2016, 231, 56-67.	1.0	46
67	Smartphone-Enabled Paper-Based Hemoglobin Sensor for Extreme Point-of-Care Diagnostics. ACS Sensors, 2021, 6, 1077-1085.	4.0	46
68	Anomalous mixing behaviour in rotationally actuated microfluidic devices. Lab on A Chip, 2011, 11, 2823.	3.1	44
69	Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: framework for combined magnetohydrodynamic and magnetophoretic particle transport. Microfluidics and Nanofluidics, 2012, 13, 799-807.	1.0	43
70	Combined Effects of Interfacial Permittivity Variations and Finite Ionic Sizes on Streaming Potentials in Nanochannels. Langmuir, 2012, 28, 17552-17563.	1.6	43
71	Capillary filling dynamics of water in nanopores. Applied Physics Letters, 2012, 101, .	1.5	42
72	Role of streaming potential on pulsating mass flow rate control in combined electroosmotic and pressureâ€driven microfluidic devices. Electrophoresis, 2012, 33, 419-425.	1.3	42

#	Article	IF	CITATIONS
73	Electrohydrodynamics of confined two-dimensional liquid droplets in uniform electric field. Physics of Fluids, 2018, 30, .	1.6	42
74	Oscillatory shear stress induced calcium flickers in osteoblast cells. Integrative Biology (United) Tj ETQq0 0 0 rgB	Г /Qyerloc	k 10 Tf 50 70 41
75	Wettability-mediated dynamics of two-phase flow in microfluidic T-junction. Physics of Fluids, 2018, 30, 122106.	1.6	41
76	Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements. Physical Review E, 2012, 85, 046304.	0.8	40
77	Combined influences of viscous dissipation, non-uniform Joule heating and variable thermophysical properties on convective heat transfer in microtubes. International Journal of Heat and Mass Transfer, 2012, 55, 762-772.	2.5	39
78	Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus) Tj ETQq0 0 0 rg	gBT /Over 1.2	oç <u>k</u> 10 Tf 50
79	Slippery to Sticky Transition of Hydrophobic Nanochannels. Nano Letters, 2015, 15, 7497-7502.	4.5	38
80	Effect of surfactant on motion and deformation of compound droplets in arbitrary unbounded Stokes flows. Journal of Fluid Mechanics, 2016, 803, 200-249.	1.4	38
81	The effect of uniform electric field on the cross-stream migration of a drop in plane Poiseuille flow. Journal of Fluid Mechanics, 2016, 809, 726-774.	1.4	38
82	Hydrodynamics in deformable microchannels. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	38
83	Time periodic electroosmosis of linear viscoelastic liquids over patterned charged surfaces in microfluidic channels. Journal of Non-Newtonian Fluid Mechanics, 2013, 202, 1-11.	1.0	37
84	lonic size dependent electroosmosis in ionâ€selective microchannels and nanochannels. Electrophoresis, 2013, 34, 2193-2198.	1.3	36
85	Energy generation from water flow over a reduced graphene oxide surface in a paper–pencil device. Lab on A Chip, 2016, 16, 3589-3596.	3.1	36
86	Electrothermally modulated contact line dynamics of a binary fluid in a patterned fluidic environment. Physics of Fluids, 2018, 30, .	1.6	36
87	Instant power generation from an air-breathing paper and pencil based bacterial bio-fuel cell. Lab on A Chip, 2015, 15, 2580-2583.	3.1	35
88	Electroosmosis of Viscoelastic Fluids: Role of Wall Depletion Layer. Langmuir, 2017, 33, 12046-12055.	1.6	35
89	Rotational electrohydrodynamics of a non-Newtonian fluid under electrical double-layer phenomenon: the role of lateral confinement. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	35
90	Influence of combined electromagnetohydrodynamics on microchannel flow with electrokinetic effect and interfacial slip. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	34

#	Article	IF	CITATIONS
91	Mixed Electroosmotically and Pressure-Driven Flow with Temperature-Dependent Properties. Journal of Thermophysics and Heat Transfer, 2011, 25, 432-442.	0.9	33
92	Thermocapillary-actuated contact-line motion of immiscible binary fluids over substrates with patterned wettability in narrow confinement. Physical Review E, 2014, 90, 023011.	0.8	33
93	Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Physical Review E, 2015, 92, 023002.	0.8	33
94	Heat transfer in an evaporating thin liquid film moving slowly along the walls of an inclined microchannel. International Journal of Heat and Mass Transfer, 2005, 48, 2801-2805.	2.5	32
95	Rheology-modulated contact line dynamics of an immiscible binary system under electrical double layer phenomena. Soft Matter, 2015, 11, 6692-6702.	1.2	32
96	Universal evaporation dynamics of ordered arrays of sessile droplets. Journal of Fluid Mechanics, 2019, 866, 61-81.	1.4	32
97	Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel. Microvascular Research, 2014, 92, 25-33.	1.1	31
98	Contact line dynamics of electroosmotic flows of incompressible binary fluid system with density and viscosity contrasts. Physics of Fluids, 2015, 27, 032109.	1.6	31
99	Flow dynamics of a viscoelastic fluid squeezed and extruded between two parallel plates. Journal of Non-Newtonian Fluid Mechanics, 2016, 227, 56-64.	1.0	31
100	Confinement effects on the rotational microflows of a viscoelastic fluid under electrical double layer phenomenon. Journal of Non-Newtonian Fluid Mechanics, 2017, 244, 123-137.	1.0	31
101	Effect of uniform electric field on the drop deformation in simple shear flow and emulsion shear rheology. Physics of Fluids, 2017, 29, .	1.6	31
102	Hydroelectric power plant on a paper strip. Lab on A Chip, 2018, 18, 1560-1568.	3.1	31
103	Electrohydrodynamic interaction between droplet pairs in a confined shear flow. Physics of Fluids, 2019, 31, .	1.6	31
104	Implications of hydrophobic interactions and consequent apparent slip phenomenon on the entrance region transport of liquids through microchannels. Physics of Fluids, 2008, 20, .	1.6	30
105	Effective viscosity of nanoscale colloidal suspensions. Journal of Applied Physics, 2009, 106, .	1.1	30
106	Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing. Physics of Fluids, 2011, 23, .	1.6	30
107	Electrokinetic energy conversion in nanofluidic channels: Addressing the loose ends in nanodevice efficiency. Electrophoresis, 2015, 36, 675-681.	1.3	30
108	Thermally enhanced self-propelled droplet motion on gradient surfaces. RSC Advances, 2015, 5, 45266-45275.	1.7	30

#	Article	IF	CITATIONS
109	Electric field-induced pinch-off of a compound droplet in Poiseuille flow. Physics of Fluids, 2019, 31, .	1.6	30
110	Universality in coalescence of polymeric fluids. Soft Matter, 2020, 16, 10921-10927.	1.2	30
111	Analyzing the Fluid Flow in Continuous Casting through Evolutionary Neural Nets and Multiâ€Objective Genetic Algorithms. Steel Research International, 2010, 81, 197-203.	1.0	29
112	Capillary filling dynamics of viscoelastic fluids. Physical Review E, 2014, 89, 053024.	0.8	29
113	Drop deformation and emulsion rheology under the combined influence of uniform electric field and linear flow. Journal of Fluid Mechanics, 2018, 841, 408-433.	1.4	29
114	Thermally developing electroosmotic transport of nanofluids in microchannels. Microfluidics and Nanofluidics, 2008, 4, 501-511.	1.0	28
115	Controlled microbubble generation on a compact disk. Applied Physics Letters, 2010, 97, 234103.	1.5	28
116	Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Physics of Fluids, 2017, 29,	1.6	28
117	Hemodynamic shear stress induces protective autophagy in HeLa cells through lipid raft-mediated mechanotransduction. Clinical and Experimental Metastasis, 2018, 35, 135-148.	1.7	28
118	Flow-induced deformation in a microchannel with a non-Newtonian fluid. Biomicrofluidics, 2018, 12, 034116.	1.2	28
119	Development and fluidic simulation of microneedles for painless pathological interfacing with living systems. Journal of Applied Physics, 2008, 103, 114701.	1.1	27
120	Micro-scale thermo-fluidic transport in two immiscible liquid layers subject to combined electroosmotic and pressure-driven transport. International Journal of Heat and Mass Transfer, 2009, 52, 2660-2666.	2.5	27
121	Effects of solvent-mediated nonelectrostatic ion-ion interactions on a streaming potential in microchannels and nanochannels. Physical Review E, 2013, 88, 033014.	0.8	27
122	On-chip lectin microarray for glycoprofiling of different gastritis types and gastric cancer. Biomicrofluidics, 2014, 8, 034107.	1.2	27
123	Studies on transport phenomena during directional solidification of a noneutectic binary solution cooled from the top. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2003, 34, 899-909.	1.0	26
124	Probing nanoantenna-directed photothermal destruction of tumors using noninvasive laser irradiation. Applied Physics Letters, 2009, 95, 233701.	1.5	26
125	Effect of submicron particles on electrowetting on dielectrics (EWOD) of sessile droplets. Journal of Colloid and Interface Science, 2011, 363, 640-645.	5.0	26
126	Extended Graetz problem for combined electroosmotic and pressure-driven flows in narrow confinements with thick electric double layers. International Journal of Heat and Mass Transfer, 2012, 55, 4724-4733.	2.5	26

#	Article	IF	CITATIONS
127	Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients. Physical Review E, 2013, 88, 053020.	0.8	26
128	Filling of charged cylindrical capillaries. Physical Review E, 2014, 90, 043011.	0.8	26
129	Anomalous interplay of slip, shear and wettability in nanoconfined water. Nanoscale, 2019, 11, 11254-11261.	2.8	26
130	Electroâ€kinetically driven route for highly sensitive blood pathology on a paperâ€based device. Electrophoresis, 2020, 41, 615-620.	1.3	26
131	PSA detection using label free graphene FET with coplanar electrodes based microfluidic point of care diagnostic device. Talanta, 2021, 222, 121581.	2.9	26
132	Order Parameter Description of Electrochemical-Hydrodynamic Interactions in Nanochannels. Physical Review Letters, 2008, 101, 184501.	2.9	25
133	Effect of presence of salt on the dynamics of water in uncharged nanochannels. Journal of Chemical Physics, 2013, 138, 054504.	1.2	25
134	Alterations in streaming potential in presence of time periodic pressureâ€driven flow of a power law fluid in narrow confinements with nonelectrostatic ion–ion interactions. Electrophoresis, 2014, 35, 662-669.	1.3	25
135	Pulsating electric field modulated contact line dynamics of immiscible binary systems in narrow confinements under an electrical double layer phenomenon. Soft Matter, 2014, 10, 8512-8523.	1.2	25
136	Effect of Surface Wettability on Crack Dynamics and Morphology of Colloidal Films. Langmuir, 2015, 31, 6001-6010.	1.6	25
137	Heat Transfer and Entropy Generation Characteristics of a Non-Newtonian Fluid Squeezed and Extruded Between Two Parallel Plates. Journal of Heat Transfer, 2017, 139, .	1.2	25
138	Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Physics of Fluids, 2017, 29, 072002.	1.6	25
139	Capillary filling in centrifugally actuated microfluidic devices with dynamically evolving contact line motion. Journal of Applied Physics, 2009, 105, .	1.1	24
140	Wenzel and Cassie-Baxter states of an electrolytic drop on charged surfaces. Physical Review E, 2012, 86, 011603.	0.8	24
141	Confinement-induced alterations in the evaporation dynamics of sessile droplets. Soft Matter, 2017, 13, 969-977.	1.2	24
142	Universal evaporation dynamics of a confined sessile droplet. Applied Physics Letters, 2017, 111, .	1.5	24
143	Mimicking wettability alterations using temperature gradients for water nanodroplets. Nanoscale, 2017, 9, 12509-12515.	2.8	24
144	Sedimentation of a surfactant-laden drop under the influence of an electric field. Journal of Fluid Mechanics, 2018, 849, 277-311.	1.4	24

#	Article	IF	CITATIONS
145	Rayleigh-benard convection during solidification of an eutectic solution cooled from the top. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2002, 33, 605-612.	1.0	23
146	Gas Injection in Steelmaking Vessels: Coupling a Fluid Dynamic Analysis with a Genetic Algorithms-Based Pareto-Optimality. Materials and Manufacturing Processes, 2005, 20, 363-379.	2.7	23
147	A generalized model for probing frictional characteristics of pressure-driven liquid microflows. Journal of Applied Physics, 2007, 102, 104907.	1.1	23
148	Effect of fluidic transport on the reaction kinetics in lectin microarrays. Analytica Chimica Acta, 2011, 701, 6-14.	2.6	23
149	Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Physical Review E, 2016, 93, 043127.	0.8	23
150	Streaming potential-modulated capillary filling dynamics of immiscible fluids. Soft Matter, 2016, 12, 2056-2065.	1.2	23
151	The effect of surface charge convection and shape deformation on the settling velocity of drops in nonuniform electric field. Physics of Fluids, 2017, 29, .	1.6	23
152	Microfluidics on Porous Substrates Mediated by Capillarity-Driven Transport. Industrial & Engineering Chemistry Research, 2020, 59, 3644-3654.	1.8	23
153	Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: An analytical approach. Journal of Chemical Physics, 2013, 139, 224503.	1.2	22
154	Effect of hematocrit on blood dynamics on a compact disc platform. Analyst, The, 2015, 140, 1432-1437.	1.7	22
155	Dielectrophoresis of a surfactant-laden viscous drop. Physics of Fluids, 2016, 28, .	1.6	22
156	Transient electroosmosis of a Maxwell fluid in a rotating microchannel. Electrophoresis, 2017, 38, 2741-2748.	1.3	22
157	Influence of complex interfacial rheology on the thermocapillary migration of a surfactant-laden droplet in Poiseuille flow. Physics of Fluids, 2018, 30, 022103.	1.6	22
158	Electrothermally actuated moving contact line dynamics over chemically patterned surfaces with resistive heaters. Physics of Fluids, 2018, 30, .	1.6	22
159	Electrokinetics with blood. Electrophoresis, 2019, 40, 180-189.	1.3	22
160	Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: a review. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3089-3131.	1.6	22
161	Electrically modulated dynamic spreading of drops on soft surfaces. Applied Physics Letters, 2015, 107, 034101.	1.5	21
162	Effect of temperature gradient on the cross-stream migration of a surfactant-laden droplet in Poiseuille flow. Journal of Fluid Mechanics, 2018, 835, 170-216.	1.4	21

#	Article	IF	CITATIONS
163	Effect of Marangoni stress on the bulk rheology of a dilute emulsion of surfactant-laden deformable droplets in linear flows. Physical Review Fluids, 2017, 2, .	1.0	21
164	Analytical Solutions for Heat Transfer During Cyclic Melting and Freezing of a Phase Change Material Used in Electronic or Electrical Packaging. Journal of Electronic Packaging, Transactions of the ASME, 2003, 125, 126-133.	1.2	20
165	Droplet dynamics in a microchannel subjected to electrocapillary actuation. Journal of Applied Physics, 2007, 101, 104901.	1.1	20
166	Influence of streaming potential on the elastic response of a compliant microfluidic substrate subjected to dynamic loading. Physics of Fluids, 2010, 22, 122002.	1.6	20
167	Augmented stress-responsive characteristics of cell lines in narrow confinements. Integrative Biology (United Kingdom), 2011, 3, 684.	0.6	20
168	Thin film evaporation in microchannels with interfacial slip. Microfluidics and Nanofluidics, 2011, 10, 155-163.	1.0	20
169	Graetz Problem Extended to Mixed Electroosmotically and Pressure Driven Flow. Journal of Thermophysics and Heat Transfer, 2012, 26, 123-133.	0.9	20
170	Variational formulation on Joule heating in combined electroosmotic and pressure driven microflows. International Journal of Heat and Mass Transfer, 2013, 61, 254-265.	2.5	20
171	Small-Scale Flow with Deformable Boundaries. Journal of the Indian Institute of Science, 2018, 98, 159-183.	0.9	20
172	Confinement effect on electrically induced dynamics of a droplet in shear flow. Physical Review E, 2019, 100, 033101.	0.8	20
173	Electrically modulated dynamics of a compound droplet in a confined microfluidic environment. Journal of Fluid Mechanics, 2020, 882, .	1.4	20
174	A portable spinning disc for complete blood count (CBC). Biosensors and Bioelectronics, 2020, 150, 111935.	5.3	20
175	Biomicrofluidics: Recent trends and future challenges. Sadhana - Academy Proceedings in Engineering Sciences, 2009, 34, 573-590.	0.8	19
176	Frictional and Heat Transfer Characteristics of Single-Phase Microchannel Liquid Flows. Heat Transfer Engineering, 2012, 33, 425-446.	1.2	19
177	Transient dynamics of confined liquid drops in a uniform electric field. Physical Review E, 2014, 89, 053020.	0.8	19
178	Dynamics of Electrically Modulated Colloidal Droplet Transport. Langmuir, 2015, 31, 11269-11278.	1.6	19
179	Electroosmosis over non-uniformly charged surfaces: modified Smoluchowski slip velocity for second-order fluids. Journal of Fluid Mechanics, 2016, 809, 664-690.	1.4	19
180	Paper-PDMS hybrid microchannel: a platform for rapid fluid-transport and mixing. Journal of Micromechanics and Microengineering, 2016, 26, 105008.	1.5	19

#	Article	IF	CITATIONS
181	A scaling analysis for electrohydrodynamic convection with variable thermophysical and electrical properties. International Journal of Heat and Mass Transfer, 2017, 109, 215-222.	2.5	19
182	Electrokinetics over charge-modulated surfaces in the presence of patterned wettability: Role of the anisotropic streaming potential. Physical Review E, 2013, 88, 033001.	0.8	18
183	Slip-driven alteration in film condensation over vertical surfaces. International Communications in Heat and Mass Transfer, 2013, 46, 37-41.	2.9	18
184	Pulsating flow driven alteration in moving contact-line dynamics on surfaces with patterned wettability gradients. Journal of Applied Physics, 2014, 116, .	1.1	18
185	Effect of nonuniform electric field on the electrohydrodynamic motion of a drop in Poiseuille flow. Physics of Fluids, 2017, 29, 052006.	1.6	18
186	Cross-stream migration of a surfactant-laden deformable droplet in a Poiseuille flow. Physics of Fluids, 2017, 29, .	1.6	18
187	Electrical switching of a surfactant coated drop in Poiseuille flow. Journal of Fluid Mechanics, 2019, 870, 27-66.	1.4	18
188	Near-wall hydrodynamic slip triggers swimming state transition of micro-organisms. Journal of Fluid Mechanics, 2020, 894, .	1.4	18
189	Consistent accounting of steric effects for prediction of streaming potential in narrow confinements. Physical Review E, 2012, 86, 061504.	0.8	17
190	Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor. Physical Review E, 2013, 87, .	0.8	17
191	Interfacial dynamics of two immiscible fluids in spatially periodic porous media: The role of substrate wettability. Physical Review E, 2014, 90, 013003.	0.8	17
192	Spreading of a Droplet over a Nonisothermal Substrate: Multiple Scaling Regimes. Langmuir, 2015, 31, 4169-4175.	1.6	17
193	Collective dynamics of red blood cells on an <i>in vitro</i> microfluidic platform. Lab on A Chip, 2018, 18, 3939-3948.	3.1	17
194	Electro-thermally driven transport of a non-conducting fluid in a two-layer system for MEMS and biomedical applications. Journal of Applied Physics, 2018, 123, .	1.1	17
195	Joule heating-induced particle manipulation on a microfluidic chip. Biomicrofluidics, 2019, 13, 014113.	1.2	17
196	Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices. Scientific Reports, 2015, 5, 14725.	1.6	17
197	Alternating current electrothermal modulated moving contact line dynamics of immiscible binary fluids over patterned surfaces. Soft Matter, 2017, 13, 6377-6389.	1.2	17
198	Patterning nanoscale flow vortices in nanochannels with patterned substrates. Physical Review E, 2010, 81, 016324.	0.8	16

#	Article	IF	CITATIONS
199	Perspective: Flicking with flow: Can microfluidics revolutionize the cancer research?. Biomicrofluidics, 2013, 7, 011811.	1.2	16
200	Relaxation characteristics of a compliant microfluidic channel under electroosmotic flow. Soft Matter, 2013, 9, 1562-1569.	1.2	16
201	Consistent prediction of streaming potential in non-Newtonian fluids: the effect of solvent rheology and confinement on ionic conductivity. Physical Chemistry Chemical Physics, 2015, 17, 7282-7290.	1.3	16
202	2D nanomaterials in 3D/4D-printed biomedical devices. Journal of Materials Research, 2021, 36, 4024-4050.	1.2	16
203	Shape evolution of compound droplet in combined presence of electric field and extensional flow. Physical Review Fluids, 2020, 5, .	1.0	16
204	Transport phenomena in laser surface alloying. Journal of Materials Science, 2003, 38, 155-164.	1.7	15
205	Near-wall effects in micro scale Couette flow and heat transfer in the Maxwell-slip regimes. Microfluidics and Nanofluidics, 2007, 3, 437-449.	1.0	15
206	Nonlinear Amplification in Electrokinetic Pumping in Nanochannels in the Presence of Hydrophobic Interactions. Physical Review Letters, 2013, 110, 184503.	2.9	15
207	Rapid capillary filling via ion–water interactions over the nanoscale. Nanoscale, 2016, 8, 6535-6541.	2.8	15
208	Droplet migration characteristics in confined oscillatory microflows. Physical Review E, 2016, 93, 023106.	0.8	15
209	Influence of interfacial viscosity on the dielectrophoresis of drops. Physics of Fluids, 2017, 29, 052002.	1.6	15
210	Mixing characteristics in microchannels with biomimetic superhydrophobic (Lotus leaf replica) walls. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	15
211	Surfactant-induced retardation in lateral migration of droplets in a microfluidic confinement. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	15
212	Inexpensive and Versatile Paper-Based Platform for 3D Culture of Liver Cells and Related Bioassays. ACS Applied Bio Materials, 2020, 3, 2522-2533.	2.3	15
213	Nontrivial augmentations in mixing performance through integrated active and passive mixing in serpentine microchannels. Journal of Applied Physics, 2012, 111, .	1.1	14
214	Influence of hydrophobic effects on streaming potential. Physical Review E, 2013, 88, 043007.	0.8	14
215	Diffusive dynamics on paper matrix. Applied Physics Letters, 2016, 109, .	1.5	14
216	Electro-osmosis over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. Physics of Fluids, 2016, 28, 062007.	1.6	14

#	Article	IF	CITATIONS
217	Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant-laden deformable drops in linear flows. Physics of Fluids, 2018, 30, .	1.6	14
218	On heat transport and energy partition in thermal convection with mixed boundary conditions. Physics of Fluids, 2019, 31, .	1.6	14
219	Uniform electric-field-induced non-Newtonian rheology of a dilute suspension of deformable Newtonian drops. Physical Review Fluids, 2017, 2, .	1.0	14
220	Combined Effects of Surface Roughness and Wetting Characteristics on the Moving Contact Line in Microchannel Flows. Langmuir, 2012, 28, 16701-16710.	1.6	13
221	Enhancement of static incubation time in microfluidic cell culture platforms exploiting extended air–liquid interface. Lab on A Chip, 2012, 12, 69-73.	3.1	13
222	Haemoglobin content modulated deformation dynamics of red blood cells on a compact disc. Lab on A Chip, 2015, 15, 4571-4577.	3.1	13
223	Startup electroosmotic flow of a viscoelastic fluid characterized by Oldroyd-B model in a rectangular microchannel with symmetric and asymmetric wall zeta potentials. Journal of Non-Newtonian Fluid Mechanics, 2017, 247, 41-52.	1.0	13
224	Thermophoretically driven capillary transport of nanofluid in a microchannel. Advanced Powder Technology, 2018, 29, 964-971.	2.0	13
225	Microgroove geometry dictates slippery hydrodynamics on superhydrophobic substrates. Physics of Fluids, 2018, 30, 122007.	1.6	13
226	Alteration in contact line dynamics of fluid-fluid interfaces in narrow confinements through competition between thermocapillary and electrothermal effects. Physics of Fluids, 2018, 30, .	1.6	13
227	Electrohydrodynamic settling of drop in uniform electric field: beyond Stokes flow regime. Journal of Fluid Mechanics, 2019, 881, 498-523.	1.4	13
228	Directionally controlled open channel microfluidics. Physics of Fluids, 2019, 31, .	1.6	13
229	Compressive stress-induced autophagy promotes invasion of HeLa cells by facilitating protein turnover in vitro. Experimental Cell Research, 2019, 381, 201-207.	1.2	13
230	Electrowetting of a nano-suspension on a soft solid. Applied Physics Letters, 2019, 114, .	1.5	13
231	Tunable adhesion and slip on a bio-mimetic sticky soft surface. Soft Matter, 2019, 15, 9031-9040.	1.2	13
232	Electric field modulated deformation dynamics of a compound drop in the presence of confined shear flow. Physics of Fluids, 2020, 32, .	1.6	13
233	Flow and deformation characteristics of a flexible microfluidic channel with axial gradients in wall elasticity. Soft Matter, 2020, 16, 5777-5786.	1.2	13
234	Influence of non-hydrodynamic forces on the elastic response of an ultra-thin soft coating under fluid-mediated dynamic loading. Physics of Fluids, 2020, 32, .	1.6	13

#	Article	IF	CITATIONS
235	Thermal Transport Regimes and Generalized Regime Diagram for High Energy Surface Melting Processes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 143-147.	1.0	12
236	Fluid flow in hydrocyclones optimized through multi-objective genetic algorithms. Inverse Problems in Science and Engineering, 2008, 16, 1023-1046.	1.2	12
237	A semi-analytical model for species transport in combined electroosmotic and pressure driven microflows with surface adsorption–desorption reactions. Microfluidics and Nanofluidics, 2011, 10, 821-829.	1.0	12
238	Experimental investigation of enhanced spreading and cooling from a microgrooved surface. Microfluidics and Nanofluidics, 2011, 11, 489-499.	1.0	12
239	Influence of ambient vapor concentration on droplet evaporation in a perspective of comparison between diffusion controlled model and kinetic model. International Journal of Heat and Mass Transfer, 2011, 54, 4580-4584.	2.5	12
240	Substrate wettability induced alterations in convective heat transfer characteristics in microchannel flows: An order parameter approach. International Journal of Heat and Mass Transfer, 2013, 67, 1083-1095.	2.5	12
241	The role of acoustofluidics in targeted drug delivery. Biomicrofluidics, 2015, 9, 052609.	1.2	12
242	Effect of interfacial slip on the deformation of a viscoelastic drop in uniaxial extensional flow field. Physics of Fluids, 2017, 29, .	1.6	12
243	Numerical investigations of electrothermally actuated moving contact line dynamics: Effect of property contrasts. Physics of Fluids, 2017, 29, 082009.	1.6	12
244	Electrorheology of a dilute emulsion of surfactant-covered drops. Journal of Fluid Mechanics, 2019, 881, 524-550.	1.4	12
245	Air-water meniscus shape in superhydrophobic triangular microgroove is dictated by a critical pressure under dynamic conditions. Physics of Fluids, 2019, 31, .	1.6	12
246	Cooperative evaporation in two-dimensional droplet arrays. Physical Review E, 2020, 101, 043101.	0.8	12
247	Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomaterials Science and Engineering, 2021, 7, 1263-1277.	2.6	12
248	Substrate wettability guided oriented self assembly of Janus particles. Scientific Reports, 2021, 11, 1182.	1.6	12
249	Electroosmosis over charge-modulated surfaces with finite electrical double layer thicknesses: Asymptotic and numerical investigations. Physical Review Fluids, 2017, 2, .	1.0	12
250	NUMERICAL MODELING OF HEAT AND MASS TRANSFER IN LASER SURFACE ALLOYING: NON-EQUILIBRIUM SOLIDIFICATION EFFECTS. Materials and Manufacturing Processes, 2002, 17, 455-468.	2.7	11
251	Consistent description of electrohydrodynamics in narrow fluidic confinements in the presence of hydrophobic interactions. Physical Review E, 2012, 85, 046305.	0.8	11
252	Hydrodynamic Swirl Decay in Microtubes with Interfacial Slip. Nanoscale and Microscale Thermophysical Engineering, 2012, 16, 133-143.	1.4	11

#	Article	IF	CITATIONS
253	Generation of droplets to serpentine threads on a rotating compact-disk platform. Applied Physics Letters, 2015, 107, .	1.5	11
254	Electro-capillary effects in capillary filling dynamics of electrorheological fluids. Soft Matter, 2015, 11, 6957-6967.	1.2	11
255	Effect of Oxide Layer in the Ultra Fast Cooling of a Steel Plate. Experimental Heat Transfer, 2015, 28, 156-173.	2.3	11
256	Microfluidics-based Low-Cost Medical Diagnostic Devices: Some Recent Developments. INAE Letters, 2016, 1, 59-64.	1.0	11
257	Energy-efficient generation of controlled vortices on low-voltage digital microfluidic platform. Applied Physics Letters, 2018, 113, 124103.	1.5	11
258	Biomimetic pulsatile flows through flexible microfluidic conduits. Biomicrofluidics, 2019, 13, 014103.	1.2	11
259	Comparison of the quasi-steady-state heat transport in phase-change and classical Rayleigh-Bénard convection for a wide range of Stefan number and Rayleigh number. Physics of Fluids, 2019, 31, .	1.6	11
260	Rotational instabilities in microchannel flows. Physics of Fluids, 2019, 31, .	1.6	11
261	Activated micromotor propulsion by enzyme catalysis in a biofluid medium. Applied Physics Letters, 2019, 114, .	1.5	11
262	On the lifetime of evaporating confined sessile droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 78-83.	2.3	11
263	Mechanical stress-induced autophagic response: A cancer-enabling characteristic?. Seminars in Cancer Biology, 2020, 66, 101-109.	4.3	11
264	On-Chip Concentration and Patterning of Biological Cells Using Interplay of Electrical and Thermal Fields. Analytical Chemistry, 2020, 92, 838-844.	3.2	11
265	Confluence of channel dimensions and groove width dictates slippery hydrodynamics in grooved hydrophobic confinements. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	11
266	Non-wetting Liquid-Infused Slippery Paper. Langmuir, 2021, 37, 13627-13636.	1.6	11
267	Molecular Selfâ€Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport. Advanced Materials, 2022, 34, e2108940.	11.1	11
268	Effects of Solutal Undercooling on Three-Dimensional Double-Diffusive Convection and Macrosegregation during Solidification of a Binary Alloy. Numerical Heat Transfer; Part A: Applications, 2005, 48, 261-281.	1.2	10
269	Droplet transport through dielectrophoretic actuation using line electrode. Microfluidics and Nanofluidics, 2014, 16, 597-603.	1.0	10
270	Heat Transfer from a Hot Moving Steel Plate by Air-Atomized Spray Impingement. Experimental Heat Transfer, 2016, 29, 78-96.	2.3	10

#	Article	IF	CITATIONS
271	Electrowetting of sessile drops on soft dielectric elastomer films. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	10
272	Interfacial dynamics of immiscible binary fluids through ordered porous media: The interplay of thermal and electric fields. Physics of Fluids, 2019, 31, .	1.6	10
273	High Temperature Durability of Oleoplaned Slippery Copper Surfaces. Langmuir, 2020, 36, 4135-4143.	1.6	10
274	Interfacial viscosity-dictated morpho-dynamics of a compound drop in linear flows. Physics of Fluids, 2020, 32, 062006.	1.6	10
275	Steady axial electric field may lead to controllable cross-stream migration of droplets in confined oscillatory microflows. Journal of Fluid Mechanics, 2021, 907, .	1.4	10
276	Efficient simulation of non-classical liquid–vapour phase-transition flows: a method of fundamental solutions. Journal of Fluid Mechanics, 2021, 919, .	1.4	10
277	Piecewise Isothermal Nucleic Acid Testing (PINAT) for Infectious Disease Detection with Sample-to-Result Integration at the Point-of-Care. ACS Sensors, 2021, 6, 3753-3764.	4.0	10
278	Targeting Magnetic Nanoparticles in Physiologically Mimicking Tissue Microenvironment. ACS Applied Materials & Interfaces, 2022, 14, 31689-31701.	4.0	10
279	Large-eddy simulation of laser-induced surface-tension-driven flow. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2005, 36, 743-754.	1.0	9
280	An analytical approach to the effect of finiteâ€sized end reservoirs on electroosmotic transport through narrow confinements. Electrophoresis, 2011, 32, 638-645.	1.3	9
281	Superparamagnetic nanoparticle assisted hyperthermia and cooling protocol for optimum damage of internal carcinoma using computational predictive model. Heat and Mass Transfer, 2013, 49, 1217-1229.	1.2	9
282	Capillary filling under electro-osmotic effects in the presence of electromagneto-hydrodynamic effects. Physical Review E, 2014, 89, 063017.	0.8	9
283	AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements. Langmuir, 2015, 31, 5952-5961.	1.6	9
284	Spatiotemporal dynamics of doxorubicin elution from embolic beads within a microfluidic network. Journal of Controlled Release, 2015, 214, 62-75.	4.8	9
285	Deformation of a surfactant-laden viscoelastic droplet in a uniaxial extensional flow. Physics of Fluids, 2018, 30, 122108.	1.6	9
286	Electrokinetic Trapping of Microparticles Using Paper-and-Pencil Microfluidics. Physical Review Applied, 2019, 12, .	1.5	9
287	Water desalination using graphene oxide-embedded paper microfluidics. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	9
288	Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180522.	1.0	9

#	Article	IF	CITATIONS
289	Upstream events dictate interfacial slip in geometrically converging nanopores. Journal of Chemical Physics, 2021, 154, 164709.	1.2	9
290	Interfacial viscosity-induced suppression of lateral migration of a surfactant laden droplet in a nonisothermal Poiseuille flow. Physical Review Fluids, 2021, 6, .	1.0	9
291	Thermally modulated cross-stream migration of a surfactant-laden deformable drop in a Poiseuille flow. Physical Review Fluids, 2018, 3, .	1.0	9
292	Analytical investigations on breakup of viscous liquid droplets on surface tension modulation during welding metal transfer. Applied Physics Letters, 2005, 86, 174104.	1.5	8
293	Electrowetting of evaporating extended meniscus. Soft Matter, 2012, 8, 11302.	1.2	8
294	Alteration of chaotic advection in blood flow around partial blockage zone: Role of hematocrit concentration. Journal of Applied Physics, 2013, 113, .	1.1	8
295	Influence of disjoining pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical capillaries. Physical Review E, 2014, 89, 053002.	0.8	8
296	Experimental and Theoretical Evaluation of On-Chip Micro Heat Pipe. Nanoscale and Microscale Thermophysical Engineering, 2015, 19, 75-93.	1.4	8
297	Oscillatory regimes of capillary imbibition of viscoelastic fluids through concentric annulus. RSC Advances, 2016, 6, 60117-60125.	1.7	8
298	Confinement suppresses instabilities in particle-laden droplets. Scientific Reports, 2017, 7, 7708.	1.6	8
299	Finite size effects of ionic species sensitively determine load bearing capacities of lubricated systems under combined influence of electrokinetics and surface compliance. Soft Matter, 2017, 13, 6422-6429.	1.2	8
300	Electrically modulated capillary filling imbibition of nematic liquid crystals. Physical Review E, 2018, 97, 043107.	0.8	8
301	Effect of transverse temperature gradient on the migration of a deformable droplet inÂa Poiseuille flow. Journal of Fluid Mechanics, 2018, 850, 1142-1171.	1.4	8
302	Simulations of a weakly conducting droplet under the influence of an alternating electric field. Electrophoresis, 2020, 41, 1953-1960.	1.3	8
303	Transport of vascular endothelial growth factor dictates on-chip angiogenesis in tumor microenvironment. Physics of Fluids, 2021, 33, .	1.6	8
304	Nano-particles in optimal concentration facilitate electrically driven dynamic spreading of a drop on a soft viscoelastic solid. Physics of Fluids, 2020, 32, .	1.6	8
305	Portable, handheld, and affordable blood perfusion imager for screening of subsurface cancer in resource-limited settings. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
306	Surface-charge-induced alteration of nanovortex patterning in nanoscale confinements with patterned wettability gradients. Physical Review E, 2012, 85, 016315.	0.8	7

#	Article	IF	CITATIONS
307	Electroosmotic flows with simultaneous spatio-temporal modulations in zeta potential: cases of thick electrical double layers beyond the Debye Hückel limit. Microfluidics and Nanofluidics, 2012, 12, 395-410.	1.0	7
308	Numerical predictions of backward-facing step flows in microchannels using extended Navier–Stokes equations. Microfluidics and Nanofluidics, 2014, 16, 757-772.	1.0	7
309	Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems. Physics of Fluids, 2015, 27, 053601.	1.6	7
310	Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects. Physical Review E, 2017, 96, 013114.	0.8	7
311	A portable rotating disc as blood rheometer. Biomicrofluidics, 2019, 13, 064120.	1.2	7
312	Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit. Journal of Fluid Mechanics, 2021, 924, .	1.4	7
313	Morpho-dynamic evolution due to inertia-mediated impact of a compound drop on a deep liquid pool. Physics of Fluids, 2022, 34, .	1.6	7
314	Electrically modulated relaxation dynamics of pre-stretched droplets post switched-off uniaxial extensional flow. Soft Matter, 2022, 18, 3678-3697.	1.2	7
315	Genetic Algorithm-Based Optimal Design of Plate Fins Following Minimum Entropy Generation Considerations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219, 757-765.	1.1	6
316	A generalized formulation of latent heat functions in enthalpy-based mathematical models for multicomponent alloy solidification systems. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 143-145.	1.0	6
317	Effects of Jet Obliquity on Hydraulic Jumps Formed by Impinging Circular Liquid Jets on a Moving Horizontal Plate. Journal of Fluids Engineering, Transactions of the ASME, 2009, 131, .	0.8	6
318	Time periodic electroosmotic flow between oscillating boundaries in narrow confinements. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2010, 2, 61-73.	0.7	6
319	Computational Analysis of the Effects of Process Parameters on Molten Pool Transport in Cu-Ni Dissimilar Laser Weld Pool. Numerical Heat Transfer; Part A: Applications, 2010, 58, 272-294.	1.2	6
320	Modeling of Asphaltene Transport and Separation in the Presence of Finite Aggregation Effects in Pressure-Driven Microchannel Flow. Energy & Fuels, 2012, 26, 5851-5857.	2.5	6
321	Electro-osmosis of electrorheological fluids. Physical Review E, 2013, 88, 053001.	0.8	6
322	Maxwell stress-induced flow control of a free surface electro-osmotic flow in a rectangular microchannel. Microfluidics and Nanofluidics, 2014, 16, 721-728.	1.0	6
323	Predicting <i>Escherichia coli</i>'s chemotactic drift under exponential gradient . Physical Review E, 2017, 96, 032409.	0.8	6
324	Formation of Blood Droplets: Influence of the Plasma Proteins. ACS Omega, 2018, 3, 10967-10973.	1.6	6

#	Article	IF	CITATIONS
325	Interplay of Coriolis effect with rheology results in unique blood dynamics on a compact disc. Analyst, The, 2019, 144, 3782-3789.	1.7	6
326	Universal oscillatory dynamics in capillary filling. Europhysics Letters, 2019, 125, 14003.	0.7	6
327	Electrokinetics over hydrophobic surfaces. Electrophoresis, 2019, 40, 616-624.	1.3	6
328	Temperature-gradient-induced massive augmentation of solute dispersion in viscoelasticÂmicro-flows. Journal of Fluid Mechanics, 2020, 897, .	1.4	6
329	Streaming potential in bio-mimetic microvessels mediated by capillary glycocalyx. Microvascular Research, 2020, 132, 104039.	1.1	6
330	Steering a thermally activated micromotor with a nearby isothermal wall. Journal of Fluid Mechanics, 2021, 915, .	1.4	6
331	Generalization of elastohydrodynamic interactions between a rigid sphere and a nearby soft wall. Journal of Fluid Mechanics, 2021, 923, .	1.4	6
332	Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow. Physical Review E, 2021, 104, 015108.	0.8	6
333	Scaling estimations of thermal and flow field in gas-stirred ladles. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2005, 36, 541-546.	1.0	5
334	Transport Mechanisms of Falling Crystals Detached from the Freezing Front during Solidification of a Hypereutectic Binary Mixture. Physical Review Letters, 2005, 95, 024504.	2.9	5
335	Parallel Simulation Study of a Laser Surface Alloying Process. Numerical Heat Transfer; Part A: Applications, 2006, 49, 905-922.	1.2	5
336	A Generalized Enthalpy-based Macro Model for Ternary Alloy Solidification Simulations. Numerical Heat Transfer, Part B: Fundamentals, 2007, 51, 293-313.	0.6	5
337	Spatially uniform microflows induced by thermoviscous expansion along a traveling temperature wave: Analogies with electro-osmotic transport. Physical Review E, 2012, 86, 016321.	0.8	5
338	Solventâ€mediated nonelectrostatic ion–ion interactions predicting anomalies in electrophoresis. Electrophoresis, 2017, 38, 712-719.	1.3	5
339	Spontaneous electrorheological effect in nematic liquid crystals under Taylor-Couette flow configuration. Physics of Fluids, 2017, 29, 092008.	1.6	5
340	An Experimental Study of the Electrohydrodynamic Characteristics of Sedimenting Drops Under Uniform Alternating Electric Fields. IEEE Transactions on Industry Applications, 2017, 53, 5838-5844.	3.3	5
341	Micromechanical properties of biomedical hydrogel for application as microchannel elastomer. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 217-224.	1.5	5
342	The effect of the finite size of ions and Debye layer overspill on the screened Coulomb interactions between charged flat plates. Electrophoresis, 2020, 41, 607-614.	1.3	5

#	Article	IF	CITATIONS
343	Reagent-free hemoglobin estimation on a spinning disc. Microchemical Journal, 2021, 168, 106463.	2.3	5
344	Smartphone-Integrated Label-Free Rapid Screening of Anemia from the Pattern Formed by One Drop of Blood on a Wet Paper Strip. ACS Sensors, 2022, 7, 2028-2036.	4.0	5
345	Effect of process parameter on turbulent transport in a laser surface alloying process. Journal of Laser Applications, 2006, 18, 138-150.	0.8	4
346	Fluid Flow in a Tundish Optimized through Genetic Algorithms. Steel Research International, 2007, 78, 517-521.	1.0	4
347	Thermally activated control of microfluidic friction. Applied Physics Letters, 2012, 101, 134101.	1.5	4
348	Effect of streaming current on helical flows of power law fluids. Physics of Fluids, 2014, 26, 122003.	1.6	4
349	Fractional separation of polymers in nanochannels: Combined influence of wettability and structure. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2118-2125.	2.4	4
350	Strong rotating flow in stationary droplets in low power budget using wire electrode configuration. Electrophoresis, 2019, 40, 2971-2978.	1.3	4
351	Frequency-induced morphology alterations in microconfined biological cells. Medical and Biological Engineering and Computing, 2019, 57, 819-835.	1.6	4
352	Effect of charge convection on gravitational settling of drop in uniform electric field. Physics of Fluids, 2020, 32, 112013.	1.6	4
353	Rapid determination of erythrocyte sedimentation rate (ESR) by an electrically driven blood droplet biosensor. Biomicrofluidics, 2020, 14, 064108.	1.2	4
354	Evolution of Paper Microfluidics as an Alternate Diagnostic Platform. Advanced Functional Materials and Sensors, 2019, , 83-98.	1.2	4
355	Bubble Dynamics and Enhancement of Pool Boiling in Presence of an Idealized Porous Medium: A Numerical Study Using Lattice Boltzmann Method. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	4
356	Oscillation dynamics of embolic microspheres in flows with red blood cell suspensions. Journal of Applied Physics, 2012, 112, 124701.	1.1	3
357	Taylor–Couette flow of electrorheological fluids under electrical double layer phenomenon. Journal of Non-Newtonian Fluid Mechanics, 2015, 223, 165-175.	1.0	3
358	Capillary transport of two immiscible fluids in presence of electroviscous retardation. Electrophoresis, 2017, 38, 747-754.	1.3	3
359	Nature-Inspired Bio-Microfluidic Device by Soft Lithography Technique <tex>\$cdot\$</tex> . , 2018, , .		3
360	Surface Nanostructure–Wettability Coupling Leads to Unique Topological Evolution Dictating Water Transport over Nanometer Scales. Langmuir, 2020, 36, 8111-8122.	1.6	3

#	Article	IF	CITATIONS
361	Mechanistic basis of transport in unconfined swirling flows. Physics of Fluids, 2021, 33, 053109.	1.6	3
362	lonic wind review-2020: advancement and application in thermal management. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	3
363	Coriolis force-driven instabilities in stratified miscible layers on a rotationally actuated microfluidic platform. Physical Review Fluids, 2019, 4, .	1.0	3
364	Fabricating Antipathogenic Interfaces via Nanoscale Topographies Inspired from Snake Skin. ACS Applied Bio Materials, 2022, 5, 862-872.	2.3	3
365	Augmented surface adsorption characteristics by employing patterned microfluidic substrates in conjunction with transverse electric fields. Microfluidics and Nanofluidics, 2010, 8, 313-327.	1.0	2
366	Effect of a Microconfined Fluidic Environment: Droplets/Cells, and Beyond…. , 2012, , .		2
367	Scaling regimes of thermocapillarity-driven dynamics of confined long bubbles: Effects of disjoining pressure. Physical Review E, 2015, 91, 033021.	0.8	2
368	New regimes of dispersion in microfluidics as mediated by travelling temperature waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190382.	1.0	2
369	Coriolis force-based instability of a shear-thinning microchannel flow. Physics of Fluids, 2020, 32, .	1.6	2
370	Influence of Temperature-Dependent Physical Properties on Liquid Metal Droplet Impact Dynamics. Journal of Thermal Science and Engineering Applications, 2022, 14, .	0.8	2
371	Numerical Study of Pool Boiling Heat Transfer From Surface With Protrusions Using Lattice Boltzmann Method. Journal of Heat Transfer, 2021, 143, .	1.2	2
372	Rheologyâ€modulated alterations in electroâ€magnetoâ€hydrodynamic flows in a narrow cylindrical capillary: Contrasting trends in high and low surface charge limits. Electrophoresis, 2021, , .	1.3	2
373	Thermotaxis of a deformable droplet in a confined Poiseuille flow. Journal of Fluid Mechanics, 2022, 944, .	1.4	2
374	Streaming Potential in Microflows and Nanoflows. Springer Tracts in Mechanical Engineering, 2014, , 339-353.	0.1	1
375	Special Issue on Microfluidics: Theory and Applications. Journal of the Indian Institute of Science, 2018, 98, 83-84.	0.9	1
376	Alternating Current Electrothermal Flow for Energy Efficient Thermal Management of Microprocessor Hot Spots. , 2019, , .		1
377	Tailoring PDMS microfluidic channel surfaces for improved cell adhesion. AIP Conference Proceedings, 2020, , .	0.3	1
378	A scalable spectral Stokes solver for simulation of time-periodic flows in complex geometries. Journal of Computational Physics, 2021, 445, 110601.	1.9	1

#	Article	IF	CITATIONS
379	SU-G-TeP3-07: On the Development of Mechano-Biological Assessment of Leukemia Cells Using Optical Tweezers. Medical Physics, 2016, 43, 3675-3675.	1.6	1
380	C-MEMS Derived Glassy Carbon Electrodes as Sensitive Electrochemical Biosensors. , 2018, , .		0
381	Reply to comments by A. Pantokratoras on ""Electrokinetically modulated peristaltic transport of power-law fluids†by Prakash Goswami, Jeevanjyoti Chakraborty, Aditya Bandopadhyay, Suman Chakraborty, Microvascular Research 103 (2016) 41-54â€, Microvascular Research (2019). Microvascular Research 2020, 129, 103964.	1.1	0
382	Anomalous diffusion in an electrolyte saturated paper matrix. Electrophoresis, 2020, 41, 678-683.	1.3	0
383	Scaling laws for external fluid flow induced by controlled periodic heating of a solid boundary. Physical Review E, 2020, 101, 033105.	0.8	0
384	10.1063/1.4996986.1., 2017,,.		0
385	10.1063/1.5110295.1.,2019,,.		0
386	Fluid Dynamics in Deformable Microchannels. , 2021, , 145-167.		0