
## Mehdi Shakourian-Fard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5007213/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Trends in Na-Ion Solvation with Alkyl-Carbonate Electrolytes for Sodium-Ion Batteries: Insights from First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 22747-22759.                                                                           | 3.1 | 84        |
| 2  | In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium<br>Ion Battery Applications. Journal of Physical Chemistry C, 2014, 118, 13406-13416.                                                                                   | 3.1 | 74        |
| 3  | Meta-Hybrid Density Functional Theory Study of Adsorption of Imidazolium- and Ammonium-Based<br>Ionic Liquids on Graphene Sheet. Journal of Physical Chemistry C, 2015, 119, 7095-7108.                                                                                | 3.1 | 68        |
| 4  | Design of silica supported task-specific ionic liquid catalyst system for oxidation of cyclohexene to adipic acid with 30% H2O2. Catalysis Communications, 2012, 26, 54-57.                                                                                            | 3.3 | 60        |
| 5  | Trends in Physisorption of Ionic Liquids on Boron-Nitride Sheets. Journal of Physical Chemistry C, 2014, 118, 26003-26016.                                                                                                                                             | 3.1 | 54        |
| 6  | Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide. Catalysis Communications, 2014, 52, 16-21.                                                                                                                    | 3.3 | 46        |
| 7  | Immobilizing magnetic glutaraldehyde cross-linked chitosan on graphene oxide and nitrogen-doped<br>graphene oxide as well-dispersible adsorbents for chromate removal from aqueous solutions.<br>International Journal of Biological Macromolecules, 2019, 128, 61-73. | 7.5 | 43        |
| 8  | A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature. RSC Advances, 2014, 4, 44274-44281.                                                                                               | 3.6 | 38        |
| 9  | Silver nanoparticles supported on silica-coated ferrite as magnetic and reusable catalysts for oxidant-free alcohol dehydrogenation. RSC Advances, 2015, 5, 22503-22509.                                                                                               | 3.6 | 38        |
| 10 | Evaluating the Free Energies of Solvation and Electronic Structures of Lithiumâ€lon Battery Electrolytes. ChemPhysChem, 2016, 17, 2916-2930.                                                                                                                           | 2.1 | 36        |
| 11 | Ionic Liquid Based on α-Amino Acid Anion and N7,N9-Dimethylguaninium Cation ([dMG][AA]): Theoretical<br>Study on the Structure and Electronic Properties. Journal of Physical Chemistry A, 2012, 116, 5436-5444.                                                       | 2.5 | 30        |
| 12 | The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids. Physical Chemistry Chemical Physics, 2017, 19, 4383-4395.                                                                                     | 2.8 | 29        |
| 13 | Calcium-Ion Batteries: Identifying Ideal Electrolytes for Next-Generation Energy Storage Using<br>Computational Analysis. Journal of Physical Chemistry C, 2019, 123, 15885-15896.                                                                                     | 3.1 | 29        |
| 14 | Quantitative structure-property relationship for melting and freezing points of deep eutectic solvents. Journal of Molecular Liquids, 2021, 321, 114744.                                                                                                               | 4.9 | 26        |
| 15 | Synthesis of α-Aminophosphonates in the Presence of a Magnetic Recyclable Fe3O4@SiO2-2mimSO3H<br>Nanocatalyst. Bulletin of the Chemical Society of Japan, 2014, 87, 982-987.                                                                                           | 3.2 | 22        |
| 16 | Influence of the hydrogen bonding on the basicity of selected macrocyclic amines. Journal of Physical<br>Organic Chemistry, 2012, 25, 803-810.                                                                                                                         | 1.9 | 19        |
| 17 | Effect of mono-vacant defects on the opto-electronic properties of ionic liquid functionalized hexagonal boron-nitride nanosheets. Journal of Molecular Liquids, 2018, 249, 1172-1182.                                                                                 | 4.9 | 17        |
| 18 | A green procedure for direct oxidation of organic halides to aldehydes and ketones catalyzed by a molybdate-based catalyst. New Journal of Chemistry, 2015, 39, 3845-3851                                                                                              | 2.8 | 16        |

| #  | Article                                                                                                                                                                                                                                               | IF               | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 19 | A DFT study of the adsorption of deep eutectic solvents onto graphene and defective graphene nanoflakes. Journal of Molecular Liquids, 2021, 327, 114850.                                                                                             | 4.9              | 16                  |
| 20 | Unraveling the effect of nitrogen doping on graphene nanoflakes and the adsorption properties of ionic liquids: A DFT study. Journal of Molecular Liquids, 2020, 312, 113400.                                                                         | 4.9              | 16                  |
| 21 | Electronic Structure Insights into the Solvation of Magnesium Ions with Cyclic and Acyclic Carbonates. ChemPhysChem, 2015, 16, 3607-3617.                                                                                                             | 2.1              | 15                  |
| 22 | The effect of ionic liquid adsorption on the electronic and optical properties of fluorographene nanosheets. Journal of Molecular Liquids, 2018, 268, 206-214.                                                                                        | 4.9              | 15                  |
| 23 | The effect of sulfur and nitrogen/sulfur co-doping in graphene surface on the adsorption of toxic heavy metals (Cd, Hg, Pb). Journal of Materials Science, 2019, 54, 13175-13189.                                                                     | 3.7              | 14                  |
| 24 | Cooperativity effects of intramolecular OH…O interactions on p <i>K</i> <sub>a</sub> values of polyolalkyl sulfonic acids in the gas phase and solution: a density functional theory study. Journal of Physical Organic Chemistry, 2014, 27, 604-612. | 1.9              | 13                  |
| 25 | Molecular structure and character of bonding of mono and divalent metal cations (Li+, Na+, K+,) Tj ETQq1 1 0.78<br>613-626.                                                                                                                           | 4314 rgB1<br>2.0 | - /Overlock 1<br>12 |
| 26 | A highly reactive and magnetic recyclable catalyst based on silver nanoparticles supported on ferrite<br>for <i>N</i> â€monoalkylation of amines with alcohols. Applied Organometallic Chemistry, 2017, 31,<br>e3720.                                 | 3.5              | 12                  |
| 27 | Theoretical investigation on the structural and electronic properties of complexes formed by thymine and 2′-deoxythymidine with different anions. Structural Chemistry, 2012, 23, 17-28.                                                              | 2.0              | 11                  |
| 28 | Selective aqueous oxidation of alcohols catalyzed by copper (II) phthalocyanine nanoparticles.<br>Comptes Rendus Chimie, 2016, 19, 314-319.                                                                                                           | 0.5              | 11                  |
| 29 | Defectâ€Based Modulation of Optoelectronic Properties for Biofunctionalized Hexagonal Boron<br>Nitride Nanosheets. ChemPhysChem, 2017, 18, 2328-2335.                                                                                                 | 2.1              | 11                  |
| 30 | Tailoring of graphene quantum dots for toxic heavy metals detection. Applied Physics A: Materials<br>Science and Processing, 2019, 125, 1.                                                                                                            | 2.3              | 11                  |
| 31 | Adsorption mechanism of toxic heavy metal ions on oxygen-passivated nanopores in graphene nanoflakes. Journal of Materials Science, 2020, 55, 15826-15844.                                                                                            | 3.7              | 11                  |
| 32 | Density functional theory investigation into the interaction of deep eutectic solvents with amino acids. Journal of Molecular Liquids, 2021, 343, 117624.                                                                                             | 4.9              | 11                  |
| 33 | Surface Chargeâ€Transfer Doping of Graphene Nanoflakes Containing Doubleâ€Vacancy (5â€8â€5) and<br>Stone–Wales (55â€77) Defects through Molecular Adsorption. ChemPhysChem, 2016, 17, 3289-3299.                                                      | 2.1              | 10                  |
| 34 | Interaction of cations with 2′â€deoxythymidine nucleoside and analysis of the nature and strength of cation bonds. Journal of Physical Organic Chemistry, 2012, 25, 153-161.                                                                          | 1.9              | 9                   |
| 35 | Influence of the water molecules (nÂ=Â1–6) on the interaction between Li+, Na+, K+ cations and indole<br>molecule as tryptophan amino acid residue. Structural Chemistry, 2012, 23, 857-865.                                                          | 2.0              | 8                   |
| 36 | Silver nanoparticles immobilized onto poly(4â€vinylpyridine)â€functionalized magnetic nanoparticles: A<br>robust magnetically recyclable catalyst for oxidantâ€free alcohol dehydrogenation. Applied<br>Organometallic Chemistry, 2018, 32, e4061.    | 3.5              | 8                   |

Mehdi Shakourian-Fard

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structural and electronic properties of alkyl-trifluoroborate based ionic liquids: A theoretical study. Journal of Fluorine Chemistry, 2013, 153, 96-100.                                                                                       | 1.7 | 6         |
| 38 | Interaction of Cun, Agn and Aun (nÂ= 1–4) nanoparticles with ChCl:Urea deep eutectic solvent. Journal of Molecular Graphics and Modelling, 2021, 105, 107866.                                                                                   | 2.4 | 6         |
| 39 | Refractive index prediction of deep eutectic solvents by molecular approaches. Journal of Molecular<br>Liquids, 2021, 332, 115843.                                                                                                              | 4.9 | 6         |
| 40 | Computational investigation of thermochemical properties of non-natural C-nucloebases: different<br>hydrogen-bonding preferences for non-natural Watson–Crick base pairs. Structural Chemistry, 2013,<br>24, 1015-1025.                         | 2.0 | 5         |
| 41 | The interaction of deep eutectic solvents with pristine carbon nanotubes and their associated defects: A density functional theory study. Journal of Molecular Liquids, 2022, 363, 119855.                                                      | 4.9 | 5         |
| 42 | What roles do boron substitutions play in structural, tautomeric, base pairing and electronic<br>properties of uracil? NBO & AIM analysis. Journal of Physical Organic Chemistry, 2012, 25, 787-796.                                            | 1.9 | 4         |
| 43 | Structural and electronic properties of adsorbed nucleobases on Si-doped hexagonal boron nitride nanoflake: a computational study. Structural Chemistry, 2019, 30, 1277-1287.                                                                   | 2.0 | 4         |
| 44 | DFT study of interaction of Palladium Pdn (n = 1–6) nanoparticles with deep eutectic solvents. Journal of Molecular Graphics and Modelling, 2022, 110, 108072.                                                                                  | 2.4 | 3         |
| 45 | INFLUENCE OF CATION-HETEROATOM (Li+, Na+, AND K+) INTERACTION ON THE STRUCTURAL AND THERMOCHEMICAL PROPERTIES OF 2â€2-DEOXYTHYMIDINE NUCLEOSIDE: QTAIM AND NBO ANALYZES. Journal of Theoretical and Computational Chemistry, 2013, 12, 1250113. | 1.8 | 2         |
| 46 | Effect of mono-vacant defects on the adsorption properties of deep eutectic solvents onto hexagonal boron-nitride nanoflakes. Journal of Molecular Liquids, 2022, 349, 118122.                                                                  | 4.9 | 2         |
| 47 | Chemical structure-based models for prediction of density of ammonium and phosphonium-based deep eutectic solvents. Journal of Molecular Liquids, 2021, 343, 117595.                                                                            | 4.9 | 1         |