
Jorge M Vivanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The rhizosphere microbiome: Plant–microbial interactions for resource acquisition. Journal of Applied Microbiology, 2022, 133, 2864-2876.	1.4	39
2	Root exudates drive soilâ€microbeâ€nutrient feedbacks in response to plant growth. Plant, Cell and Environment, 2021, 44, 613-628.	2.8	150
3	Methods for Root Exudate Collection and Analysis. Methods in Molecular Biology, 2021, 2232, 291-303.	0.4	16
4	Conditioned soils reveal plant-selected microbial communities that impact plant drought response. Scientific Reports, 2021, 11, 21153.	1.6	13
5	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. PLoS ONE, 2020, 15, e0234216.	1.1	29
6	Differential Effects of Phosphorus Fertilization on Plant Uptake and Rhizosphere Microbiome of Cultivated and Non-cultivated Potatoes. Microbial Ecology, 2020, 80, 169-180.	1.4	18
7	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. , 2020, 15, e0234216.		0
8	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. , 2020, 15, e0234216.		0
9	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. , 2020, 15, e0234216.		Ο
10	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. , 2020, 15, e0234216.		0
11	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. , 2020, 15, e0234216.		Ο
12	Role of root exudates on assimilation of phosphorus in young and old Arabidopsis thaliana plants. , 2020, 15, e0234216.		0
13	Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere, 2019, 12, 100176.	1.4	37
14	Isolation of Klebsiella pneumoniae and Pseudomonas aeruginosa from entomopathogenic nematode-insect host relationship to examine bacterial pathogenicity on Trichoplusia ni. Microbial Pathogenesis, 2019, 135, 103606.	1.3	4
15	A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Scientific Reports, 2019, 9, 7521.	1.6	34
16	Coâ€inoculation of <i>Bacillus</i> sp. and <i>Pseudomonas putida</i> at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. Journal of Applied Microbiology, 2019, 127, 196-207.	1.4	92
17	<i>Trichoderma gamsii</i> affected herbivore feeding behaviour on <i>Arabidopsis thaliana</i> by modifying the leaf metabolome and phytohormones. Microbial Biotechnology, 2018, 11, 1195-1206.	2.0	21
18	Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6, 156	4.9	354

#	Article	IF	CITATIONS
19	Phosphorus addition shifts the microbial community in the rhizosphere of blueberry (Vaccinium) Tj ETQq1 1 0.784	314 rgBT 1.4	/Qyerlock I
20	The unseen rhizosphere root–soil–microbe interactions for crop production. Current Opinion in Microbiology, 2017, 37, 8-14.	2.3	250
21	Plant–insect–pathogen interactions: a naturally complex ménage à trois. Current Opinion in Microbiology, 2017, 37, 54-60.	2.3	42
22	Bacterial Microbiome and Nematode Occurrence in Different Potato Agricultural Soils. Microbial Ecology, 2017, 74, 888-900.	1.4	51
23	Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant and Soil, 2017, 419, 523-539.	1.8	58
24	Guest editorial: Plants and their surrounding microorganisms: a dynamic world of interactions. Current Opinion in Microbiology, 2017, 37, v-vi.	2.3	2
25	Shift of allelochemicals from <i>Sorghum halepense</i> in the soil and their effects on the soil's bacterial community. Weed Biology and Management, 2017, 17, 161-168.	0.6	3
26	Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 2016, 107, 324-333.	2.1	257
27	Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities. Microbial Ecology, 2016, 72, 497-502.	1.4	4
28	Soil memory as a potential mechanism for encouraging sustainable plant health and productivity. Current Opinion in Biotechnology, 2016, 38, 137-142.	3.3	60
29	Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant and Soil, 2016, 401, 259-272.	1.8	104
30	Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 2015, 5, 13438.	1.6	178
31	Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes. Molecular Plant-Microbe Interactions, 2015, 28, 1049-1058.	1.4	221
32	Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 2015, 89, 206-209.	4.2	69
33	Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil, 2015, 392, 115-126.	1.8	155
34	<i>Bacillus</i> spp. from rainforest soil promote plant growth under limited nitrogen conditions. Journal of Applied Microbiology, 2015, 118, 672-684.	1.4	51
35	De-coupling of root–microbiome associations followed by antagonist inoculation improves rhizosphere soil suppressiveness. Biology and Fertility of Soils, 2014, 50, 217-224.	2.3	66
36	Enhanced rhizosphere colonization of beneficial <i>Bacillus amyloliquefaciens</i> SQR9 by pathogen infection. FEMS Microbiology Letters, 2014, 353, 49-56.	0.7	83

#	Article	IF	CITATIONS
37	Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany, 2014, 92, 267-275.	0.5	547
38	Rhizosphere microbiome assemblage is affected by plant development. ISME Journal, 2014, 8, 790-803.	4.4	1,128
39	Plant-Plant-Microbe Mechanisms Involved in Soil-Borne Disease Suppression on a Maize and Pepper Intercropping System. PLoS ONE, 2014, 9, e115052.	1.1	73
40	Variations in Diversity and Richness of Gut Bacterial Communities of Termites (Reticulitermes flavipes) Fed with Grassy and Woody Plant Substrates. Microbial Ecology, 2013, 65, 531-536.	1.4	61
41	Isolation and characterization of ligninâ€degrading bacteria from rainforest soils. Biotechnology and Bioengineering, 2013, 110, 1616-1626.	1.7	135
42	Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 2013, 68, 1-9.	2.1	207
43	Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 2013, 198, 264-273.	3.5	245
44	Root architecture of Arabidopsis is affected by competition with neighbouring plants. Plant Growth Regulation, 2013, 70, 141-147.	1.8	20
45	ASSESSMENT OF THE ROLE OF FLUORESCENT ROOT AND SEED EXUDATES IN CROP PLANTS. Journal of Plant Nutrition, 2013, 36, 811-824.	0.9	2
46	Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome. Journal of Biological Chemistry, 2013, 288, 4502-4512.	1.6	452
47	Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions. PLoS ONE, 2013, 8, e55731.	1.1	484
48	Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 2012, 360, 1-13.	1.8	347
49	Coadaptationary Aspects of the Underground Communication Between Plants and Other Organisms. Signaling and Communication in Plants, 2012, , 361-375.	0.5	1
50	Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 2012, 48, 489-499.	2.3	859
51	Plantâ€Inhabiting Ant Utilizes Chemical Cues for Host Discrimination. Biotropica, 2012, 44, 246-253.	0.8	11
52	Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition. PLoS ONE, 2012, 7, e46640.	1,1	54
53	Chemical Ecology: Definition and Famous Examples. Signaling and Communication in Plants, 2011, , 15-26.	0.5	3
54	Expression of industrially relevant laccases: prokaryotic style. Trends in Biotechnology, 2011, 29, 480-489.	4.9	163

#	Article	IF	CITATIONS
55	The effect of root exudates on root architecture in Arabidopsis thaliana. Plant Growth Regulation, 2011, 64, 241-249.	1.8	28
56	Enterobacter soli sp. nov.: A Lignin-Degrading Î ³ -Proteobacteria Isolated from Soil. Current Microbiology, 2011, 62, 1044-1049.	1.0	56
57	Negative Effects of Sample Pooling on PCR-Based Estimates of Soil Microbial Richness and Community Structure. Applied and Environmental Microbiology, 2010, 76, 2086-2090.	1.4	46
58	Root Secretion of Defense-related Proteins Is Development-dependent and Correlated with Flowering Time. Journal of Biological Chemistry, 2010, 285, 30654-30665.	1.6	103
59	Root Secretion of Phytochemicals in Arabidopsis Is Predominantly Not Influenced by Diurnal Rhythms. Molecular Plant, 2010, 3, 491-498.	3.9	36
60	Pyrosequencing Assessment of Soil Microbial Communities in Organic and Conventional Potato Farms. Plant Disease, 2010, 94, 1329-1335.	0.7	109
61	An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota Â. Plant Physiology, 2009, 151, 2006-2017.	2.3	263
62	Phytotoxic compounds from roots ofCentaurea diffusaLam Plant Signaling and Behavior, 2009, 4, 9-14.	1.2	19
63	Rhizosphere chemical dialogues: plant–microbe interactions. Current Opinion in Biotechnology, 2009, 20, 642-650.	3.3	513
64	Regulation and function of root exudates. Plant, Cell and Environment, 2009, 32, 666-681.	2.8	1,569
65	The Effects of Flavonoid Allelochemicals from Knapweeds on Legume–Rhizobia Candidates for Restoration. Restoration Ecology, 2009, 17, 506-514.	1.4	16
66	Phytotoxic Catechin Leached by Seeds of the Tropical Weed Sesbania virgata. Journal of Chemical Ecology, 2008, 34, 681-687.	0.9	41
67	Transcriptome analysis of <i>Arabidopsis</i> roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytologist, 2008, 179, 209-223.	3.5	112
68	Do allelopathic compounds in invasive <i>Solidago canadensis</i> s.l. restrain the native European flora?. Journal of Ecology, 2008, 96, 993-1001.	1.9	198
69	A selective, sensitive, and rapid in-field assay for soil catechin, an allelochemical of Centaurea maculosa. Soil Biology and Biochemistry, 2008, 40, 1189-1196.	4.2	14
70	Root Exudates Modulate Plant—Microbe Interactions in the Rhizosphere. Soil Biology, 2008, , 241-252.	0.6	43
71	Novel role for pectin methylesterase in Arabidopsis: A new function showing ribosome-inactivating protein (RIP) activity. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 773-783.	1.1	24

Allelopathy: Full Circle from Phytotoxicity to Mechanisms of Resistance. , 2008, , 105-117.

2

#	Article	IF	CITATIONS
73	Root Exudates Regulate Soil Fungal Community Composition and Diversity. Applied and Environmental Microbiology, 2008, 74, 738-744.	1.4	659
74	NO EVIDENCE FOR TRADE-OFFS: <i>CENTAUREA</i> PLANTS FROM AMERICA ARE BETTER COMPETITORS AND DEFENDERS. Ecological Monographs, 2008, 78, 369-386.	2.4	142
75	Altered Profile of Secondary Metabolites in the Root Exudates of Arabidopsis ATP-Binding Cassette Transporter Mutants. Plant Physiology, 2008, 146, 323-324.	2.3	158
76	Root-Microbe Communication through Protein Secretion. Journal of Biological Chemistry, 2008, 283, 25247-25255.	1.6	144
77	Global Gene Expression Profiles Suggest an Important Role for Nutrient Acquisition in Early Pathogenesis in a Plant Model of <i>Pseudomonas aeruginosa</i> Infection. Applied and Environmental Microbiology, 2008, 74, 5784-5791.	1.4	23
78	A molecular approach to understanding plant - plant interactions in the context of invasion biology. Functional Plant Biology, 2008, 35, 1123.	1.1	11
79	Regulation and function of root exudates. Plant, Cell and Environment, 2008, 32, 666-81.	2.8	417
80	Soil fungal abundance and diversity: another victim of the invasive plant <i>Centaurea maculosa</i> . ISME Journal, 2007, 1, 763-765.	4.4	72
81	Concentrations of the Allelochemical (±)-Catechin IN Centaurea maculosa Soils. Journal of Chemical Ecology, 2007, 33, 2337-2344.	0.9	81
82	No evidence for root-mediated allelopathy in Centaurea solstitialis, a species in a commonly allelopathic genus. Biological Invasions, 2007, 9, 897-907.	1.2	19
83	The floral volatile, methyl benzoate, from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana. Planta, 2007, 226, 1-10.	1.6	39
84	Isolation and Purification of Ribosome-Inactivating Proteins. , 2006, 318, 335-348.		9
85	Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 783-792.	1.1	70
86	THE ROLE OF ROOT EXUDATES IN RHIZOSPHERE INTERACTIONS WITH PLANTS AND OTHER ORGANISMS. Annual Review of Plant Biology, 2006, 57, 233-266.	8.6	3,654
87	Can plant biochemistry contribute to understanding of invasion ecology?. Trends in Plant Science, 2006, 11, 574-580.	4.3	103
88	Phytotoxins Produced by Invasive Weeds and Their Applications in Agriculture and the Restoration of Natural Areas. ACS Symposium Series, 2006, , 99-112.	0.5	1
89	Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science, 2006, 11, 413-419.	4.3	344
90	Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa. Planta, 2006, 223, 785-795.	1.6	69

#	Article	IF	CITATIONS
91	Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta, 2006, 225, 301-310.	1.6	68
92	Phytotoxic Allelochemicals From Roots and Root Exudates of Leafy Spurge (<i>Euphorbia esula</i> L.). Plant Signaling and Behavior, 2006, 1, 323-327.	1.2	20
93	Screening of Grassland Plants for Restoration after Spotted Knapweed Invasion. Restoration Ecology, 2005, 13, 725-735.	1.4	49
94	Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecology Letters, 2005, 8, 209-217.	3.0	130
95	Natural selection for resistance to the allelopathic effects of invasive plants. Journal of Ecology, 2005, 93, 576-583.	1.9	217
96	Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-independent host responses. Plant Journal, 2005, 42, 417-432.	2.8	60
97	Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature, 2005, 434, 217-221.	13.7	154
98	Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta, 2005, 222, 848-857.	1.6	107
99	Bacterial expression and enzymatic activity analysis of ME1, a ribosome-inactivating protein from Mirabilis expansa. Protein Expression and Purification, 2005, 40, 142-151.	0.6	10
100	Isolation and Characterization of an RIP (Ribosome-Inactivating Protein)-Like Protein from Tobacco with Dual Enzymatic Activity. Plant Physiology, 2004, 134, 171-181.	2.3	69
101	The N-Glycosidase Activity of the Ribosome-inactivating Protein ME1 Targets Single-stranded Regions of Nucleic Acids Independent of Sequence or Structural Motifs. Journal of Biological Chemistry, 2004, 279, 34165-34174.	1.6	18
102	Proton-Transfer-Reaction Mass Spectrometry as a New Tool for Real Time Analysis of Root-Secreted Volatile Organic Compounds in Arabidopsis. Plant Physiology, 2004, 135, 47-58.	2.3	204
103	Biogeographical variation in community response to root allelochemistry: novel weapons and exotic invasion. Ecology Letters, 2004, 7, 285-292.	3.0	230
104	Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 2004, 7, 472-479.	3.5	578
105	Ribosome-inactivating proteins in plant biology. Planta, 2004, 219, 1093-1096.	1.6	56
106	Pseudomonas aeruginosa-Plant Root Interactions. Pathogenicity, Biofilm Formation, and Root Exudation. Plant Physiology, 2004, 134, 320-331.	2.3	327
107	Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiology, 2004, 134, 307-319.	2.3	860
108	How plants communicate using the underground information superhighway. Trends in Plant Science, 2004, 9, 26-32.	4.3	735

#	Article	IF	CITATIONS
109	Intraspecific and Interspecific Interactions Mediated by a Phytotoxin, (–)-Catechin, Secreted by the Roots of Centaurea maculosa (Spotted Knapweed). Journal of Chemical Ecology, 2003, 29, 2397-2412.	0.9	89
110	Molecular characterization and post-transcriptional regulation of ME1, a type-I ribosome-inactivating protein from Mirabilis expansa. Planta, 2003, 217, 498-506.	1.6	25
111	Metabolic Profiling of Root Exudates ofArabidopsisthaliana. Journal of Agricultural and Food Chemistry, 2003, 51, 2548-2554.	2.4	155
112	Root Exudation and Rhizosphere Biology. Plant Physiology, 2003, 132, 44-51.	2.3	1,216
113	Allelopathy and Exotic Plant Invasion: From Molecules and Genes to Species Interactions. Science, 2003, 301, 1377-1380.	6.0	914
114	Enantiomeric-Dependent Phytotoxic and Antimicrobial Activity of (±)-Catechin. A Rhizosecreted Racemic Mixture from Spotted Knapweed. Plant Physiology, 2002, 128, 1173-1179.	2.3	240
115	Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity. Planta, 2002, 216, 227-234.	1.6	44
116	Factors affecting growth of cell suspension cultures of hypericum perforatum L. (St. John's wort) and production of hypericin. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 58-65.	0.9	37
117	In vitro propagation of Spilanthes mauritiana DC., an endangered medicinal herb, through axillary bud cultures. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 598-601.	0.9	14
118	Root-specific metabolism: The biology and biochemistry of underground organs. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 730-741.	0.9	111
119	Characterization of Two Novel Type I Ribosome-Inactivating Proteins from the Storage Roots of the Andean CropMirabilis expansa1. Plant Physiology, 1999, 119, 1447-1456.	2.3	95
120	The Genomics of Plant Invasion: A Case Study in Spotted Knapweed. , 0, , 177-195.		1