List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006968/publications.pdf Version: 2024-02-01

<u>\λ/ει Sha</u>

#	Article	IF	CITATIONS
1	Electroless nickel, alloy, composite and nano coatings – A critical review. Journal of Alloys and Compounds, 2013, 571, 183-204.	2.8	700
2	Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface and Coatings Technology, 2005, 200, 2192-2207.	2.2	450
3	The use of artificial neural networks in materials science based research. Materials & Design, 2007, 28, 1747-1752.	5.1	224
4	Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content. Journal of Alloys and Compounds, 2002, 334, 192-199.	2.8	211
5	Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 1999, 29, 1487-1489.	4.6	204
6	Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research, 2018, 111, 23-40.	4.6	192
7	Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Computational Materials Science, 2001, 21, 375-394.	1.4	189
8	Microstructural evolution in a PH13-8 stainless steel after ageing. Acta Materialia, 2003, 51, 101-116.	3.8	156
9	Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Materials Characterization, 2002, 48, 279-295.	1.9	143
10	Differential scanning calorimetry study and computer modeling of β ⇒ α phase transformation in a Ti-6Al-4V alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 879-887.	1.1	141
11	Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Construction and Building Materials, 2017, 147, 130-142.	3.2	139
12	Resistivity study and computer modelling of the isothermal transformation kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0.08Si alloys. Journal of Alloys and Compounds, 2001, 314, 181-192.	2.8	132
13	Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Computational Materials Science, 2004, 29, 12-28.	1.4	126
14	Application of artificial neural networks for modelling correlations in titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 365, 202-211.	2.6	122
15	Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1993, 24, 1221-1232.	1.1	121
16	Hardness evolution of electroless nickel–phosphorus deposits with thermal processing. Surface and Coatings Technology, 2003, 168, 263-274.	2.2	119
17	Effects of slag substitution on physical and mechanical properties of fly ash-based alkali activated binders (AABs). Cement and Concrete Research, 2019, 122, 118-135.	4.6	119
18	Finite element modeling of the morphology of β to α phase transformation in Ti-6Al-4V alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1027-1040.	1.1	118

#	Article	IF	CITATIONS
19	Fabrication of Ti–Al coatings by mechanical alloying method. Surface and Coatings Technology, 2006, 201, 3235-3245.	2.2	109
20	Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. Journal of Alloys and Compounds, 2003, 358, 112-119.	2.8	107
21	Phase chemistry and precipitation reactions in maraging steels: Part IV. Discussion and conclusions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1993, 24, 1251-1256.	1.1	105
22	Quantification of Precipitation Hardening and Evolution of Precipitates. Materials Transactions, 2002, 43, 1273-1282.	0.4	102
23	Titanium alloys after surface gas nitriding. Surface and Coatings Technology, 2006, 201, 2467-2474.	2.2	100
24	Quantification of phase transformation kinetics of 18 wt.% Ni C250 maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 373, 10-20.	2.6	96
25	Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cement and Concrete Composites, 2001, 23, 455-461.	4.6	94
26	Modelling beta transus temperature of titanium alloys using artificial neural network. Computational Materials Science, 2005, 32, 1-12.	1.4	93
27	Crystallisation and Phase Transformation Behaviour of Electroless Nickel-Phosphorus Deposits and Their Engineering Properties. Surface Engineering, 2002, 18, 329-343.	1.1	89
28	Title is missing!. Journal of Materials Science, 2002, 37, 4445-4450.	1.7	89
29	Resistance of geopolymer and Portland cement based systems to silage effluent attack. Cement and Concrete Research, 2017, 92, 56-65.	4.6	88
30	High-temperature synchrotron X-ray diffraction study of phases in a gamma TiAl alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 103-112.	2.6	84
31	Application of artificial neural network for prediction of time–temperature–transformation diagrams in titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 283, 1-10.	2.6	81
32	Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag. Cement and Concrete Research, 2001, 31, 327-329.	4.6	69
33	Software products for modelling and simulation in materials science. Computational Materials Science, 2003, 28, 179-198.	1.4	68
34	Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design, 2014, 56, 480-486.	5.1	64
35	Experimental study and computer modelling of the β⇒α+β phase transformation in β21s alloy at isothermal conditions. Journal of Alloys and Compounds, 2003, 348, 110-118.	2.8	63
36	Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 586, 253-258.	2.6	61

#	Article	IF	CITATIONS
37	Microstructure and mechanical properties of a 2000 MPa grade co-free maraging steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2273-2287.	1.1	54
38	Phase chemistry and precipitation reactions in maraging steels: Part III. Model alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1993, 24, 1241-1249.	1.1	53
39	Maraging steels. , 2009, , .		51
40	Phase chemistry and precipitation reactions in maraging steels: Part II. Co-free T-300 steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1993, 24, 1233-1239.	1.1	50
41	Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content. Construction and Building Materials, 2021, 301, 124330.	3.2	50
42	Effect of reinforcement and heat treatment on elevated temperature sliding of electroless Ni–P/SiC composite coatings. Tribology International, 2016, 97, 265-271.	3.0	47
43	Artificial neural network modelling of crystallization temperatures of the Ni–P based amorphous alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 365, 212-218.	2.6	44
44	Microstructural and mechanical properties of nickel-base plasma sprayed coatings on steel and cast iron substrates. Surface and Coatings Technology, 2005, 197, 177-184.	2.2	43
45	FE simulation and experimental tests of high-strength structural bolts under tension. Journal of Constructional Steel Research, 2016, 126, 174-186.	1.7	43
46	Quantification of age hardening in maraging steels and an Ni-base superalloy. Scripta Materialia, 2000, 42, 549-553.	2.6	42
47	Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Science of the Total Environment, 2019, 659, 1496-1504.	3.9	42
48	Phase composition, microstructure and microhardness of electroless nickel composite coating co-deposited with SiC on cast aluminium LM24 alloy substrate. Surface and Coatings Technology, 2013, 235, 755-763.	2.2	41
49	Optimal design of long-span steel portal frames using fabricated beams. Journal of Constructional Steel Research, 2015, 104, 104-114.	1.7	41
50	A comparison of the mechanical properties of fire-resistant and S275 structural steels. Journal of Constructional Steel Research, 1999, 50, 223-233.	1.7	40
51	Aging behaviour of cobalt free chromium containing maraging steels. Materials Science and Technology, 1992, 8, 546-554.	0.8	39
52	Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 590, 199-208.	2.6	37
53	Modelling tensile properties of gamma-based titanium aluminides using artificial neural network. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 384, 129-137.	2.6	36
54	Microstructure and Mechanical Properties of Ti-6Al-4V Manufactured by Selective Laser Melting after Stress Relieving, Hot Isostatic Pressing Treatment, and Post-Heat Treatment. Journal of Materials Engineering and Performance, 2021, 30, 5290-5296.	1.2	36

#	Article	IF	CITATIONS
55	Phase evolution of Ti–6Al–4V during continuous heating. Journal of Alloys and Compounds, 1999, 290, L3-L7.	2.8	34
56	Micro-scale wear characteristics of electroless Ni–P/SiC composite coating under two different sliding conditions. Wear, 2014, 317, 254-264.	1.5	34
5 7	Resistivity study and computer modelling of the isothermal transformation kinetics of Ti–8Al–1Mo–1V alloy. Journal of Alloys and Compounds, 2002, 333, 122-132.	2.8	33
58	Microstructure and properties of nippon fire-resistant steels. Journal of Materials Engineering and Performance, 1999, 8, 606-612.	1.2	32
59	Gasars: a class of metallic materials with ordered porosity. Materials Science and Technology, 2006, 22, 1135-1147.	0.8	31
60	Analysis of deformation behavior and workability of advanced 9Cr–Nb–V ferritic heat resistant steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 604, 207-214.	2.6	31
61	Low cycle fatigue properties of CLAM steel at 823 K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 404-413.	2.6	30
62	A comprehensive model of ordered porosity formation. Acta Materialia, 2007, 55, 6459-6471.	3.8	29
63	Study on Laves phase in an advanced heat-resistant steel. Frontiers of Materials Science in China, 2009, 3, 434-441.	0.5	29
64	Resistance of fly ash geopolymer binders to organic acids. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	28
65	Age hardening and mechanical properties of a 2400 MPa grade cobalt-free maraging steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1107-1116.	1.1	27
66	Relationship between Laves phase and the impact brittleness of P92 steel reevaluated. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 252-258.	2.6	27
67	Design optimization of cold-formed steel portal frames taking into account the effect of building topology. Engineering Optimization, 2013, 45, 415-433.	1.5	26
68	Modelling of precipitation kinetics and age hardening of Fe–1–2Ni–6Mn maraging type alloy. Materials Science and Technology, 2002, 18, 377-382.	0.8	25
69	Experimental study of the voids in the electroless copper deposits and the direct measurement of the void fraction based on the scanning electron microscopy images. Applied Surface Science, 2009, 255, 4259-4266.	3.1	25
70	Simulation of microhardness profiles of titanium alloys after surface nitriding using artificial neural network. Surface and Coatings Technology, 2005, 200, 2332-2342.	2.2	24
71	The Role of Water Content and Paste Proportion on Physico-mechanical Properties of Alkali Activated Fly Ash–Ggbs Concrete. Journal of Sustainable Metallurgy, 2016, 2, 51-61.	1.1	24
72	Acid resistance of alkali-activated binders: A review of performance, mechanisms of deterioration and testing procedures. Construction and Building Materials, 2022, 342, 128057.	3.2	24

#	Article	IF	CITATIONS
73	Surface gas nitriding of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.08Si alloys. International Journal of Materials Research, 2003, 94, 19-24.	0.8	23
74	Effects of particle/matrix interface and strengthening mechanisms on the mechanical properties of metal matrix composites. Composite Interfaces, 2014, 21, 415-429.	1.3	23
75	Microstructure and mechanical properties of a 2000 MPa Co-free maraging steel after aging at 753 K. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2747-2755.	1.1	22
76	Experimental and modelling studies of the thermodynamics and kinetics of phase and structural transformations in a gamma TiAl-based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 344-353.	2.6	22
77	Optimal design of cold-formed steel portal frames for stressed-skin action using genetic algorithm. Engineering Structures, 2015, 93, 36-49.	2.6	22
78	Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic. Journal of Nuclear Materials, 2016, 473, 189-196.	1.3	22
79	Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database. Construction and Building Materials, 2017, 150, 227-237.	3.2	22
80	Quantification of precipitate fraction in Al–Si–Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 392, 449-452.	2.6	21
81	Gas nitriding of titanium alloy Timetal 205. Surface and Coatings Technology, 2008, 202, 5832-5837.	2.2	21
82	X-ray diffraction, optical microscopy, and microhardness studies of gas nitrided titanium alloys and titanium aluminide. Materials Characterization, 2008, 59, 229-240.	1.9	21
83	Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 159-171.	1.1	21
84	Deformation of titanium alloy Ti–6Al–4V under dynamic compression. Computational Materials Science, 2010, 50, 516-526.	1.4	21
85	Microstructure and mechanical properties of low nickel maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 536, 129-135.	2.6	21
86	Effect of serviceability limits on optimal design of steel portal frames. Journal of Constructional Steel Research, 2013, 86, 74-84.	1.7	21
87	Topographical optimisation of single-storey non-domestic steel framed buildings using photovoltaic panels for net-zero carbon impact. Building and Environment, 2015, 86, 120-131.	3.0	21
88	Comparison of optimal designs of steel portal frames including topological asymmetry considering rolled, fabricated and tapered sections. Engineering Structures, 2016, 111, 505-524.	2.6	21
89	Comment on "Modeling of tribological properties of alumina fiber reinforced zinc–aluminum composites using artificial neural network―by K. Genel et al. [Mater. Sci. Eng. A 363 (2003) 203]. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing 2004, 372, 334-335	2.6	20
90	Abrasive wear resistance of electroless Ni–P coated aluminium after post treatment. Surface and Coatings Technology, 2010, 205, 766-772.	2.2	20

#	Article	IF	CITATIONS
91	Low cycle fatigue properties of CLAM steel at room temperature. Fusion Engineering and Design, 2013, 88, 3050-3059.	1.0	20
92	Laves-phase in the China Low Activation Martensitic steel after long-term creep exposure. Materials & Design, 2014, 63, 333-335.	5.1	19
93	Differential scanning calorimetry study of the hydration products in portland cement pastes with metakaolin replacement. , 2002, , 881-888.		18
94	Computer modelling of the non-isothermal crystallization kinetics of electroless nickel–phosphorus deposits. Journal of Non-Crystalline Solids, 2003, 324, 230-241.	1.5	18
95	Relation Between the Microstructure and Properties of Commercial Titanium Alloys and the Parameters of Gas Nitriding. Metal Science and Heat Treatment, 2004, 46, 286-293.	0.2	18
96	Numerical study of the effects of reinforcement/matrix interphase on stress–strain behavior of YAl2 particle reinforced MgLiAl composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 363-369.	3.8	18
97	Fire Resistance of Floors Constructed with Fire-Resistant Steels. Journal of Structural Engineering, 1998, 124, 664-670.	1.7	17
98	Determination of activation energy of phase transformation and recrystallization using a modified kissinger method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2903-2904.	1.1	17
99	Quantification of precipitate fraction in maraging steels by X-ray diffraction analysis. Materials Science and Technology, 2004, 20, 126-130.	0.8	17
100	Microstructure and microhardness of gas nitrided surface layers in Ti–8Al–1Mo–1V and Ti–10V–2Fe–3Al alloys. Surface Engineering, 2005, 21, 269-278.	1.1	17
101	9-12Cr Heat-Resistant Steels. Engineering Materials, 2015, , .	0.3	17
102	Quanti cation of precipitation kinetics and age hardening of Fe–12Ni–6Mn alloy during overaging. Materials Science and Technology, 2002, 18, 529-533.	0.8	16
103	In situ high temperature microscopy study of the surface oxidation and phase transformations in titanium alloys. Journal of Microscopy, 2002, 207, 163-168.	0.8	16
104	Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks. Applied Catalysis A: General, 2007, 324, 87-89.	2.2	16
105	Scanning electron microscopy study of microstructural evolution of electroless nickel–phosphorus deposits with heat treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 168, 95-99.	1.7	16
106	Application of simple practical models for early stage ageing precipitation kinetics and hardening in aluminium alloys. Materials & Design, 2007, 28, 528-533.	5.1	15
107	Radiological evaluation of industrial residues for construction purposes correlated with their chemical properties. Science of the Total Environment, 2019, 658, 141-151.	3.9	15
108	Development of structural steels with re resistant microstructures. Materials Science and Technology, 2002, 18, 319-325.	0.8	14

#	Article	IF	CITATIONS
109	Modeling thermodynamics, kinetics, and phase transformation morphology while heat treating titanium alloys. Jom, 2005, 57, 42-45.	0.9	14
110	Comment on "Prediction of the flow stress of 0.4C–1.9Cr–1.5Mn–1.0Ni–0.2Mo steel during hot deformation―by R.H. Wu et al. [J. Mater. Process. Technol. 116 (2001) 211]. Journal of Materials Processing Technology, 2006, 171, 283-284.	3.1	14
111	Effect of Carbon Reduction on the Toughness of 9CrWVTaN Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1921-1933.	1.1	14
112	Constitutive Modeling, Microstructure Evolution, and Processing Map for a Nitride-Strengthened Heat-Resistant Steel. Journal of Materials Engineering and Performance, 2014, 23, 3042-3050.	1.2	14
113	Insight of the interface of electroless Ni–P/SiC composite coating on aluminium alloy, LM24. Materials and Design, 2015, 85, 248-255.	3.3	13
114	Atom probe field-ion microscopy study of ageing behaviour of a Co-free maraging steel. Surface Science, 1991, 246, 278-284.	0.8	12
115	Computer modelling of isothermal crystallisation kinetics of electroless and melt quenched amorphous solids using Johnson–Mehl–Avrami theory. Materials Science and Technology, 2005, 21, 69-75.	0.8	12
116	Studying and modeling surface gas nitriding for titanium alloys. Jom, 2007, 59, 38-40.	0.9	12
117	Microstructural Evolution and Mechanical Properties of Short-Term Thermally Exposed 9/12Cr Heat-Resistant Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4113-4122.	1.1	12
118	Lead–Bismuth Eutectic Corrosion Behaviors of Ferritic/Martensitic Steels in Low Oxygen Concentration Environment. Oxidation of Metals, 2015, 84, 383-395.	1.0	12
119	Oxidation and tensile behavior of ferritic/martensitic steels after exposure to lead-bismuth eutectic. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 97-105.	2.6	12
120	Resistance of Alkali-Activated Binders to Organic Acids Found in Agri-Food Effluents. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	12
121	Modelling of structural formation in ordered porosity metal materials. Modelling and Simulation in Materials Science and Engineering, 2006, 14, 663-675.	0.8	11
122	Comment on "Flow forecasting for a Hawaii stream using rating curves and neural networks―by G.B. Sahoo and C. Ray [Journal of Hydrology 317 (2006) 63–80]. Journal of Hydrology, 2007, 340, 119-121.	2.3	11
123	Microstructure evolution in CLAM steel under low cycle fatigue. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 356-359.	2.6	11
124	Corrosion and hydrogen penetration properties of electro- and electroless depositions. Journal of Alloys and Compounds, 1999, 287, L7-L9.	2.8	9
125	Discussion of ?A theoretical study of Gasarite eutectic growth?. Scripta Materialia, 2005, 52, 799-801.	2.6	9
126	Characterization of aluminized layer formation during annealing of Ti coated with an Al film. Journal of Alloys and Compounds, 2006, 420, 63-70.	2.8	9

#	Article	IF	CITATIONS
127	Modelling of kinetics of nitriding titanium alloys. Surface Engineering, 2006, 22, 452-454.	1.1	9
128	Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5079-5087.	1.1	9
129	The impact toughness of a nitride-strengthened martensitic heat resistant steel. Science China Technological Sciences, 2012, 55, 1858-1862.	2.0	9
130	Optimum design of cold-formed steel portal frame buildings including joint effects and secondary members. International Journal of Steel Structures, 2017, 17, 427-442.	0.6	9
131	Thermodynamic calculation for precipitation hardening steels and titanium aluminides. Intermetallics, 2002, 10, 945-950.	1.8	8
132	Comment on "Artificial neural network based modeling of heated catalytic converter performance― by M. Ali Akcayol and Can Cinar [Applied Thermal Engineering 25 (2005) 2341]. Applied Thermal Engineering, 2007, 27, 688-689.	3.0	8
133	The diamond pyramid structure in electroless copper deposit, its atomic model and molecular dynamics simulation. Applied Surface Science, 2008, 255, 2813-2821.	3.1	8
134	Crystallization and nematic-isotropic transition activation energies measured using the Kissinger method. Journal of Applied Polymer Science, 2001, 80, 2535-2537.	1.3	7
135	Experimental study of the effects of hydrogen penetration on gamma titanium aluminide and Beta 21S titanium alloys. Journal of Alloys and Compounds, 2002, 335, L16-L20.	2.8	7
136	The neural network modeling of titanium alloy phase transformation and mechanical properties. Jom, 2005, 57, 54-57.	0.9	7
137	Tensile and impact properties of low nickel maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 587, 301-303.	2.6	7
138	Mathematical model for simultaneous growth of gas and solid phases in gas-eutectic reaction. Journal of Materials Science, 2005, 40, 2525-2529.	1.7	6
139	Microscopy of heat treated titanium alloy BT16. Materials Science and Technology, 2011, 27, 1777-1782.	0.8	6
140	Relationship between microstructure and deformation behaviour during dynamic compression in Ti–3Al–5Mo–5V alloy. Materials Science and Technology, 2011, 27, 1399-1407.	0.8	6
141	In-situ Cu Coating on Steel Surface after Oxidizing at High Temperature. Materials, 2019, 12, 3536.	1.3	6
142	X-ray measurement of surface stress of U-0.75wt.%Ti alloy rods. Journal of the Less Common Metals, 1989, 146, 179-187.	0.9	5
143	Modeling the cold deformation of titanium alloys. Jom, 2009, 61, 51-55.	0.9	5
144	Effect of the interaction layer on the mechanical properties of Ti–6Al–4V alloy castings. Materials Chemistry and Physics, 2016, 175, 125-130.	2.0	5

#	Article	IF	CITATIONS
145	Test methods for measuring tensile strength and ductility of electroplated and electroless copper deposits. Materials Science and Technology, 2001, 17, 1033-1038.	0.8	4
146	Modeling the evolution of microstructure during the processing of maraging steels. Jom, 2004, 56, 62-66.	0.9	4
147	The use of resistivity data in calculating the kinetics of precipitate evolution in aluminium-copper-magnesium alloys based on Johnson-Mehl-Avrami theory. Physica Status Solidi A, 2005, 202, 1903-1908.	1.7	4
148	Characterization of interdiffusion growth of aluminized layer on Ti alloys. Journal of Alloys and Compounds, 2007, 429, 143-155.	2.8	4
149	Comments on "Water Quality Retrievals From Combined Landsat TM Data and ERS-2 SAR Data in the Gulf of Finland. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 1896-1897.	2.7	4
150	Precipitation, microstructure and mechanical properties of low nickel maraging steel. Materials Science and Technology, 2011, 27, 983-989.	0.8	4
151	Recrystallization activation energy in mechanically alloyed oxide-dispersion-strengthened metals measured by differential scanning calorimetry. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1885-1887.	1.1	3
152	Comment on "Artificial neural network modeling of mechanical alloying process for synthesizing of metal matrix nanocomposite powders―by Dashtbayazi et al. [Mater. Sci. Eng. A 466 (2007) 274]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 491-492.	2.6	3
153	Effects of particle plasticity characteristics on local interface stress in particle reinforced composite during uniaxial tension. Journal of Materials Science, 2011, 46, 6140-6147.	1.7	3
154	Application of Neural-Network Models. , 2009, , 553-565.		3
155	Characterisation of crystallisation behaviour of electroless Ni-P plating during heating. , 0, , .		2
156	Quantification of overaging hardening kinetics of aluminum alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2172-2174.	1.1	2
157	Evaluation of aging precipitation kinetics and potential in aluminum alloys using indiscriminately integrated peak areas in calorimetry curves. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3012-3015.	1.1	2
158	Comment on "Design of a Propane Ammoxidation Catalyst Using Artificial Neural Networks and Genetic Algorithmsâ€: Industrial & Engineering Chemistry Research, 2006, 45, 8223-8224.	1.8	2
159	Activation energy for precipitation hardening and softening in aluminium alloys calculated using hardness and resistivity data. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1927-1933.	0.8	2
160	The evolution of microstructure during the processing of gamma Tiâ 'Al alloys. Jom, 2006, 58, 64-66.	0.9	2
161	Comment on "Optimization of the Temperature Profile of a Temperature Gradient Reactor for DME Synthesis Using a Simple Genetic Algorithm Assisted by a Neural Network―by Kohji Omata, Toshihiko Ozaki, Tetsuo Umegaki, Yuhsuke Watanabe, Noritoshi Nukui, and Muneyoshi Yamada. Energy & Fuels, 2007. 21. 379-380.	2.5	2
162	Comment on "Modelling of the APS plasma spray process using artificial neural networks: Basis, requirements and an example―by Guessasma et al. [Comput. Mater. Sci. 29 (2004) 315]. Computational Materials Science, 2010, 50, 805-809.	1.4	2

#	Article	IF	CITATIONS
163	Introduction to Heat-Resistant Steels. Engineering Materials, 2015, , 1-24.	0.3	2
164	Effect of Solution Treatment and Cooling Rate on the Microstructure and Hardness of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting Before and After Hot Isostatic Pressing Treatment. Journal of Materials Engineering and Performance, 2022, 31, 3550-3558.	1.2	2
165	Materials testing of ruptured lead lined tank and lead pipe. Engineering Failure Analysis, 2003, 10, 683-698.	1.8	1
166	Re: "ldentification versus generalization. Comment on the criticism of indeterminacy of artificial neural networks―by Martin HoleÅ^a [Appl. Catal. A: Gen., 334 (2008) 381]. Applied Catalysis A: General, 2008, 334, 394-394.	2.2	1
167	Neural network method. , 2009, , 301-330.		1
168	Surface gas nitriding: phase composition and microstructure. , 2009, , 413-450.		1
169	18 Nitriding: modelling of hardness profiles and the kinetics. , 2009, , 497-531.		1
170	Comment on "Artificial neural network prediction of retained austenite content and impact toughness of high-vanadium high-speed steel (HVHSS)―by Xu et al. [Mater. Sci. Eng. A 433 (2006) 251]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3275-3276.	2.6	1
171	Cantilever steel post damaged by wind. Case Studies in Engineering Failure Analysis, 2014, 2, 162-168.	1.2	1
172	Maraging Steels: Microstructure during Thermal Processing. , 2016, , 2128-2139.		1
173	Performance of cementless binders produced from industrial waste products in strong acid. Cleaner Engineering and Technology, 2021, 2, 100035.	2.1	1
174	Modeling the Diffusion-Controlled Growth of Needle and Plate-Shaped Precipitates. Materials Research Society Symposia Proceedings, 2002, 731, 751.	0.1	0
175	Aluminising: fabrication of Al and Ti–Al coatings by mechanical alloying. , 2009, , 532-548.		ο
176	Comment on "Hardness based model for determining the kinetics of precipitation―by Mittra et al. [Mater. Sci. Eng. A 500 (2009) 244]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2802-2803.	2.6	0
177	Comment on "Hybrid computational strategy based on ANN and GAPS: Application for identification of a non-linear model of composite material― Composite Structures, 2011, 93, 1309-1310.	3.1	0
178	Stress and Strain Distributions During Compressive Deformation of Titanium Alloy Affected by Microstructure. Jom, 2013, 65, 86-92.	0.9	0
179	Low Nickel Maraging Steel. , 2013, , 163-187.		Ο
180	Comments on "High-temperature creep resistance and effects on the austenite reversion and precipitation of 18 Ni (300) maraging steel―by dos Reis et al. [Materials Characterization 107 (2015) 350–357]. Materials Characterization, 2016, 118, 302-303.	1.9	0

#	Article	IF	CITATIONS
181	Hot Deformation of Heat-Resistant Steels. Engineering Materials, 2015, , 191-215.	0.3	0
182	Kinetics of ferrite to WidmanstÃ ¤ ten austenite transformation in a high-strength low-alloy steel revisited. International Journal of Materials Research, 2022, 95, 718-723.	0.1	0