Selena Gimenez-Ibanez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006967/publications.pdf

Version: 2024-02-01

257357 454834 5,115 31 24 30 citations g-index h-index papers 33 33 33 5719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12217-12222.	3.3	998
2	The i>Arabidopsis /i>bhlh Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	3.1	906
3	AvrPtoB Targets the LysM Receptor Kinase CERK1 to Promote Bacterial Virulence on Plants. Current Biology, 2009, 19, 423-429.	1.8	419
4	Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 303-308.	3.3	303
5	Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 2016, 33, 147-156.	3.5	295
6	The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biology, 2014, 12, e1001792.	2.6	223
7	Design of a bacterial speck resistant tomato by <scp>CRISPR</scp> /Cas9â€mediated editing of <i>SI<scp>JAZ</scp>2</i> . Plant Biotechnology Journal, 2019, 17, 665-673.	4.1	215
8	Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in $\langle i \rangle$ Nicotiana benthamiana $\langle i \rangle$ Â Â. Plant Physiology, 2011, 156, 687-699.	2.3	185
9	The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE, 2011, 6, e16608.	1.1	170
10	Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Frontiers in Plant Science, 2013, 4, 72.	1.7	144
11	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	3.5	124
12	Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection. Science, 2009, 324, 784-787.	6.0	120
13	Prf immune complexes of tomato are oligomeric and contain multiple Ptoâ€like kinases that diversify effector recognition. Plant Journal, 2010, 61, 507-518.	2.8	116
14	bHLH003, bHLH013 and bHLH017 Are New Targets of JAZ Repressors Negatively Regulating JA Responses. PLoS ONE, 2014, 9, e86182.	1.1	104
15	The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by <i>Pseudomonas</i> Type III Effectors. Plant Physiology, 2016, 172, 1941-1958.	2.3	94
16	FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate. Plant Cell, 2015, 27, 3160-3174.	3.1	93
17	The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 539-541.	1.2	92
18	A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528. BMC Genomics, 2009, 10, 395.	1,2	81

#	Article	IF	CITATIONS
19	Bacterial virulence effectors and their activities. Current Opinion in Plant Biology, 2010, 13, 388-393.	3.5	79
20	Rational design of a ligand-based antagonist of jasmonate perception. Nature Chemical Biology, 2014, 10, 671-676.	3.9	74
21	How Microbes Twist Jasmonate Signaling around Their Little Fingers. Plants, 2016, 5, 9.	1.6	58
22	An Evolutionarily Ancient Immune System Governs the Interactions between Pseudomonas syringae and an Early-Diverging Land Plant Lineage. Current Biology, 2019, 29, 2270-2281.e4.	1.8	50
23	Novel players fine-tune plant trade-offs. Essays in Biochemistry, 2015, 58, 83-100.	2.1	38
24	The case for the defense: plants versus Pseudomonas syringae. Microbes and Infection, 2010, 12, 428-437.	1.0	35
25	<i>Marchantia polymorpha</i> model reveals conserved infection mechanisms in the vascular wilt fungal pathogen <i>Fusarium oxysporum</i> . New Phytologist, 2022, 234, 227-241.	3.5	22
26	Differential Suppression of Nicotiana benthamiana Innate Immune Responses by Transiently Expressed Pseudomonas syringae Type III Effectors. Frontiers in Plant Science, 2018, 9, 688.	1.7	21
27	Omega hydroxylated JA-lle is an endogenous bioactive jasmonate that signals through the canonical jasmonate signaling pathway. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 158520.	1.2	21
28	Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. Plant Cell, 2022, 34, 3214-3232.	3.1	20
29	Parasitic plants—A CuRe for what ails thee. Science, 2016, 353, 442-443.	6.0	7
30	Deciphering the mode of action and host recognition of bacterial type III effectors. Functional Plant Biology, 2010, 37, 926.	1.1	3
31	Designing disease-resistant crops: From basic knowledge to biotechnology. Metode, 2020, , .	0.0	1