
James A Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006962/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wine color. , 2022, , 97-132.		0
2	Influence of freezing and heating conditions on grape seed flavan-3-ol extractability, oxidation, and galloylation pattern. Scientific Reports, 2022, 12, 3838.	1.6	1
3	Anthocyanin Addition Alters Tannin Extraction from Grape Skins in Model Solutions via Chemical Reactions. Journal of Agricultural and Food Chemistry, 2021, 69, 7687-7697.	2.4	7
4	Precipitation before Flowering Determined Effectiveness of Leaf Removal Timing and Irrigation on Wine Composition of Merlot Grapevine. Plants, 2021, 10, 1865.	1.6	6
5	Wine polysaccharides influence tannin-protein interactions. Food Hydrocolloids, 2017, 63, 571-579.	5.6	72
6	Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (<i>Vitis) Tj ETQq0 0 0 rgBT / 8118-8127.</i>	Overlock 2.4	10 Tf 50 547 46
7	Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties. Journal of Agricultural and Food Chemistry, 2016, 64, 9116-9123.	2.4	18
8	Red Wine Tannin Structure–Activity Relationships during Fermentation and Maceration. Journal of Agricultural and Food Chemistry, 2016, 64, 860-869.	2.4	38
9	Developmental Profile of Anthocyanin, Flavonol, and Proanthocyanidin Type, Content, and Localization in Saskatoon Fruits (<i>Amelanchier alnifolia</i> Nutt.). Journal of Agricultural and Food Chemistry, 2015, 63, 1601-1614.	2.4	22
10	Low Molecular Weight Procyanidins from Grape Seeds Enhance the Impact of 5-Fluorouracil Chemotherapy on Caco-2 Human Colon Cancer Cells. PLoS ONE, 2014, 9, e98921.	1.1	44
11	Factors Affecting Skin Tannin Extractability in Ripening Grapes. Journal of Agricultural and Food Chemistry, 2014, 62, 1130-1141.	2.4	88
12	High-Performance Liquid Chromatography Determination of Red Wine Tannin Stickiness. Journal of Agricultural and Food Chemistry, 2014, 62, 6626-6631.	2.4	21
13	Effect of Wine pH and Bottle Closure on Tannins. Journal of Agricultural and Food Chemistry, 2013, 61, 11618-11627.	2.4	24
14	HPLC Retention Thermodynamics of Grape and Wine Tannins. Journal of Agricultural and Food Chemistry, 2013, 61, 4270-4277.	2.4	16
15	Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chemistry, 2013, 138, 1696-1705.	4.2	161
16	Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. Journal of Experimental Botany, 2012, 63, 2655-2665.	2.4	159
17	Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism Â. Plant Physiology, 2012, 158, 200-224.	2.3	278
18	Tissue-Specific and Developmental Modifications of Grape Cell Walls Influence the Adsorption of Proanthocyanidins. Journal of Agricultural and Food Chemistry, 2012, 60, 9249-9260.	2.4	79

JAMES A KENNEDY

#	Article	IF	CITATIONS
19	Ripening-Induced Changes in Grape Skin Proanthocyanidins Modify Their Interaction with Cell Walls. Journal of Agricultural and Food Chemistry, 2011, 59, 2696-2707.	2.4	104
20	Relationship between Red Wine Grade and Phenolics. 2. Tannin Composition and Size. Journal of Agricultural and Food Chemistry, 2011, 59, 8409-8412.	2.4	84
21	Seed-coat anatomy and proanthocyanidins contribute to the dormancy of Rubus seed. Scientia Horticulturae, 2011, 130, 762-768.	1.7	32
22	Wine and Grape Tannin Interactions with Salivary Proteins and Their Impact on Astringency: A Review of Current Research. Molecules, 2011, 16, 2348-2364.	1.7	193
23	Interaction between Grape-Derived Proanthocyanidins and Cell Wall Material. 2. Implications for Vinification. Journal of Agricultural and Food Chemistry, 2010, 58, 10736-10746.	2.4	124
24	Thermodynamics of Grape and Wine Tannin Interaction with Polyproline: Implications for Red Wine Astringency. Journal of Agricultural and Food Chemistry, 2010, 58, 12510-12518.	2.4	114
25	Interaction between Grape-Derived Proanthocyanidins and Cell Wall Material. 1. Effect on Proanthocyanidin Composition and Molecular Mass. Journal of Agricultural and Food Chemistry, 2010, 58, 2520-2528.	2.4	158
26	Plant Metabolism and the Environment: Implications for Managing Phenolics. Critical Reviews in Food Science and Nutrition, 2010, 50, 620-643.	5.4	93
27	Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of †Marion' and †Evergreen' blackberries. LWT - Food Science and Technology, 2010, 43, 1253-1264.	2.5	76
28	Determination of proanthocyanidin A2 content in phenolic polymer isolates by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 1403-1409.	1.8	50
29	Grape Skin and Seed Proanthocyanidins from Monastrell × Syrah Grapes. Journal of Agricultural and Food Chemistry, 2009, 57, 10798-10803.	2.4	67
30	Flavanâ€3â€ols: Nature, occurrence and biological activity. Molecular Nutrition and Food Research, 2008, 52, 79-104.	1.5	623
31	Assessing the impact of temperature on grape phenolic metabolism. Analytica Chimica Acta, 2008, 621, 57-67.	2.6	143
32	Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine. Food Chemistry, 2008, 109, 755-762.	4.2	109
33	Berry Integrity and Extraction of Skin and Seed Proanthocyanidins during Red Wine Fermentation. Journal of Agricultural and Food Chemistry, 2008, 56, 9006-9014.	2.4	120
34	The Chemistry of Red Wine Color. ACS Symposium Series, 2008, , 168-184.	0.5	3
35	Grape and wine phenolics: Observations and recent findings. Ciencia E Investigacion Agraria, 2008, 35, .	0.2	88
36	Influence of Vine Vigor on Grape (<i>Vitis vinifera</i> L. Cv. Pinot Noir) Anthocyanins. 1. Anthocyanin Concentration and Composition in Fruit. Journal of Agricultural and Food Chemistry, 2007, 55, 6575-6584.	2.4	106

JAMES A KENNEDY

#	Article	IF	CITATIONS
37	Compositional Investigation of Phenolic Polymers Isolated fromVitis viniferaL. Cv. Pinot Noir during Fermentation. Journal of Agricultural and Food Chemistry, 2007, 55, 5670-5680.	2.4	48
38	Ethylidene-Bridged Flavan-3-ols in Red Wine and Correlation with Wine Age. Journal of Agricultural and Food Chemistry, 2007, 55, 6292-6299.	2.4	76
39	Analysis of Ethylidene-Bridged Flavan-3-ols in Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 1109-1116.	2.4	61
40	Influence of Vine Vigor on Grape (<i>Vitis vinifera</i> L. Cv. Pinot Noir) Anthocyanins. 2. Anthocyanins and Pigmented Polymers in Wine. Journal of Agricultural and Food Chemistry, 2007, 55, 6585-6595.	2.4	45
41	Characterization ofVitis viniferaL. Cv. Carménère Grape and Wine Proanthocyanidins. Journal of Agricultural and Food Chemistry, 2007, 55, 3675-3680.	2.4	67
42	Effect of Shading on Accumulation of Flavonoid Compounds in (Vitis vinifera L.) Pinot Noir Fruit and Extraction in a Model System. Journal of Agricultural and Food Chemistry, 2006, 54, 8510-8520.	2.4	240
43	Influence of Vine Vigor on Grape (Vitis viniferaL. Cv. Pinot Noir) and Wine Proanthocyanidins. Journal of Agricultural and Food Chemistry, 2005, 53, 5798-5808.	2.4	182
44	Compositional Investigation of Pigmented Tannin. ACS Symposium Series, 2004, , 247-264.	0.5	7
45	Short History of Red Wine Color. ACS Symposium Series, 2004, , 1-6.	0.5	1
46	Analysis of the Oxidative Degradation of Proanthocyanidins under Basic Conditions. Journal of Agricultural and Food Chemistry, 2004, 52, 2292-2296.	2.4	60
47	Analysis of proanthocyanidins by high-performance gel permeation chromatography. Journal of Chromatography A, 2003, 995, 99-107.	1.8	218
48	Hop (Humulus lupulusL.) Proanthocyanidins Characterized by Mass Spectrometry, Acid Catalysis, and Gel Permeation Chromatography. Journal of Agricultural and Food Chemistry, 2003, 51, 4101-4110.	2.4	100
49	Direct Method for Determining Seed and Skin Proanthocyanidin Extraction into Red Wine. Journal of Agricultural and Food Chemistry, 2003, 51, 5877-5881.	2.4	122
50	Mass spectrometric evidence for the formation of pigmented polymers in red wine. Australian Journal of Grape and Wine Research, 2003, 9, 210-220.	1.0	83
51	Proanthocyanidins: Extraction, Purification, and Determination of Subunit Composition by HPLC. Current Protocols in Food Analytical Chemistry, 2002, 6, 11.4.1.	0.0	7
52	Composition of Grape Skin Proanthocyanidins at Different Stages of Berry Development. Journal of Agricultural and Food Chemistry, 2001, 49, 5348-5355.	2.4	283
53	Analysis of Proanthocyanidin Cleavage Products Following Acid-Catalysis in the Presence of Excess Phloroglucinol. Journal of Agricultural and Food Chemistry, 2001, 49, 1740-1746.	2.4	708
54	Analysis of pigmented high-molecular-mass grape phenolics using ion-pair, normal-phase high-performance liquid chromatography. Journal of Chromatography A, 2000, 866, 25-34.	1.8	83

JAMES A KENNEDY

#	Article	IF	CITATIONS
55	Changes in grape seed polyphenols during fruit ripening. Phytochemistry, 2000, 55, 77-85.	1.4	322
56	Development of seed polyphenols in berries from Vitis vinifera L. cv. Shiraz. Australian Journal of Grape and Wine Research, 2000, 6, 244-254.	1.0	169
57	Optimization ofin VitroFlux Through Hairless Mouse Skin of Cidofovir, a Potent Nucleotide Analog. Journal of Pharmaceutical Sciences, 1995, 84, 750-754.	1.6	13
58	Degradation of the antiarthritic prodrug, 3-carboxy-5-methyl-N-[4-(trifluoromethoxy)phenyl]-4-isoxazolecarboxamid e, in aqueous solution. Pharmaceutical Research, 1994, 11, 345-348.	1.7	0