Qun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006955/publications.pdf

Version: 2024-02-01

59	1,650	23	37
papers	citations	h-index	g-index
62	62	62	1062
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Absorption, metabolism and bioavailability of flavonoids: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7730-7742.	10.3	90
2	Underlying mechanism for the differences in heat-induced gel properties between thick egg whites and thin egg whites: Gel properties, structure and quantitative proteome analysis. Food Hydrocolloids, 2020, 106, 105873.	10.7	85
3	Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chemistry, 2022, 371, 131103.	8.2	82
4	Formation mechanism of egg white protein $\hat{\mathbb{Q}}$ -Carrageenan composite film and its application to oil packaging. Food Hydrocolloids, 2020, 105, 105780.	10.7	69
5	Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f.) Tj ETQq1 1 0.784314 r	rgBT/Over	lock 10 Tf 5
6	Proteomic analysis of egg white proteins during the early phase of embryonic development. Journal of Proteomics, 2012, 75, 1895-1905.	2.4	57
7	Quantitative N-glycoproteomic analyses provide insights into the effects of thermal processes on egg white functional properties. Food Chemistry, 2021, 342, 128252.	8.2	57
8	Ovomucin may be the key protein involved in the early formation of egg-white thermal gel. Food Chemistry, 2022, 366, 130596.	8.2	55
9	Study on the mechanism of mulberry polyphenols inhibiting oxidation of beef myofibrillar protein. Food Chemistry, 2022, 372, 131241.	8.2	53
10	Microwave pretreatment enhanced the properties of ovalbumin-inulin-oil emulsion gels and improved the storage stability of pomegranate seed oil. Food Hydrocolloids, 2021, 113, 106548.	10.7	51
11	Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities. PLoS ONE, 2016, 11, e0153457.	2.5	50
12	Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 378-393.	10.3	47
13	Co-purification of chicken egg white proteins using polyethylene glycol precipitation and anion-exchange chromatography. Separation and Purification Technology, 2012, 96, 75-80.	7.9	41
14	Effect of hydroxyl radical-induced oxidation on the structure and heat-induced gel properties of ovalbumin. Journal of Food Processing and Preservation, 2018, 42, e13626.	2.0	39
15	Inhibition of cell proliferation and triggering of apoptosis by agrimonolide through MAP kinase (ERK) Tj ETQq $1\ 1\ 0$.784314 r 4.6	gBT Overloo
16	Rheological and structural properties of ovomucin from chicken eggs with different interior quality. Food Hydrocolloids, 2020, 100, 105393.	10.7	35
17	Improvement of quality and flavor of salted egg yolks by ultrasonic assisted cooking. Ultrasonics Sonochemistry, 2021, 75, 105579.	8.2	35
18	Analysis of tartary buckwheat (<i>Fagopyrum tataricum ⟨i⟩) seed proteome using offline twoâ€dimensional liquid chromatography and tandem mass spectrometry. Journal of Food Biochemistry, 2019, 43, e12863.</i>	2.9	32

#	Article	lF	CITATIONS
19	Transcriptome and proteome analyses of the molecular mechanisms associated with coix seed nutritional quality in the process of breeding. Food Chemistry, 2019, 272, 549-558.	8.2	31
20	Integrated proteomic, phosphoproteomic and N-glycoproteomic analyses of chicken eggshell matrix. Food Chemistry, 2020, 330, 127167.	8.2	31
21	Mechanism of differences in characteristics of thick/thin egg whites during storage: Physicochemical, functional and molecular structure characteristics analysis. Food Chemistry, 2022, 369, 130828.	8.2	31
22	Hydroxyl radical-induced early stage oxidation improves the foaming and emulsifying properties of ovalbumin. Poultry Science, 2019, 98, 1047-1054.	3.4	30
23	Physiological and proteomic analyses of coix seed aging during storage. Food Chemistry, 2018, 260, 82-89.	8.2	29
24	Ball-milling is an effective pretreatment of glycosylation modified the foaming and gel properties of egg white protein. Journal of Food Engineering, 2022, 319, 110908.	5.2	26
25	Silver-Nanocellulose Composite Used as SERS Substrate for Detecting Carbendazim. Nanomaterials, 2019, 9, 355.	4.1	25
26	Physicochemical and structural characteristics of nano eggshell calcium prepared by wet ball milling. LWT - Food Science and Technology, 2020, 131, 109721.	5.2	25
27	Effectiveness of AOS–iron on iron deficiency anemia in rats. RSC Advances, 2019, 9, 5053-5063.	3.6	24
28	Mechanism of effect of heating temperature on functional characteristics of thick egg white. LWT - Food Science and Technology, 2022, 154, 112807.	5.2	24
29	Comparative Quantitative Phosphoproteomic Analysis of the Chicken Egg during Incubation Based on Tandem Mass Tag Labeling. Journal of Agricultural and Food Chemistry, 2019, 67, 13353-13361.	5.2	23
30	Nano eggshell calcium enhanced gel properties of <i>Nemipterus virgatus</i> surimi sausage: gel strength, water retention and microstructure. International Journal of Food Science and Technology, 2021, 56, 5738-5752.	2.7	23
31	Effect of highâ€pressure treatment on the quality of prepared chicken breast. International Journal of Food Science and Technology, 2021, 56, 1597-1607.	2.7	22
32	Metabolic effect of AOS-iron in rats with iron deficiency anemia using LC-MS/MS based metabolomics. Food Research International, 2020, 130, 108913.	6.2	20
33	D-penicillamine modified copper nanoparticles for fluorometric determination of histamine based on aggregation-induced emission. Mikrochimica Acta, 2020, 187, 329.	5.0	20
34	Effect of nano eggshell calcium on the structure, physicochemical, and gel properties of threadfin bream (Nemipterus virgatus) actomyosin. LWT - Food Science and Technology, 2021, 150, 112047.	5.2	20
35	Catechinic acid, a natural polyphenol compound, extends the lifespan of <i>Caenorhabditis elegans via </i> /i> mitophagy pathways. Food and Function, 2020, 11, 5621-5634.	4.6	20
36	Mulberry fruit powder enhanced the antioxidant capacity and gel properties of hammered minced beef: Oxidation degree, rheological, and structure. LWT - Food Science and Technology, 2022, 154, 112648.	5. 2	20

#	Article	IF	CITATIONS
37	Comparison of structural features and in vitro digestibility of purple yam (Dioscorea alata L.) resistant starches by autoclaving and multi-enzyme hydrolysis. Food Science and Biotechnology, 2018, 27, 27-36.	2.6	18
38	Cloud point extraction–HPLC method for the determination and pharmacokinetic study of aristolochic acids in rat plasma after oral administration of Aristolochiae Fructus. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 953-954, 73-79.	2.3	17
39	Molecular mechanism of high-pressure processing for improving the quality of low-salt Eucheuma spinosum chicken breast batters. Poultry Science, 2019, 98, 2670-2678.	3.4	17
40	Quantitative proteomics provides a new perspective on the mechanism of network structure depolymerization during egg white thinning. Food Chemistry, 2022, 392, 133320.	8.2	16
41	Recombinant CC16 regulates inflammation, oxidative stress, apoptosis and autophagy via the inhibition of the p38MAPK signaling pathway in the brain of neonatal rats with sepsis. Brain Research, 2019, 1725, 146473.	2.2	15
42	Comparative studies on the multi-component pharmacokinetics of Aristolochiae Fructus and honey-fried Aristolochiae Fructus extracts after oral administration in rats. BMC Complementary and Alternative Medicine, 2017, 17, 107.	3.7	14
43	Low-dose Dexamethasone Increases Autophagy in Cerebral Cortical Neurons of Juvenile Rats with Sepsis Associated Encephalopathy. Neuroscience, 2019, 419, 83-99.	2.3	13
44	Beneficial effects of AOS-iron supplementation on intestinal structure and microbiota in IDA rats. Food Science and Human Wellness, 2021, 10, 23-31.	4.9	13
45	Proteins associated with quality deterioration of prepared chicken breast based on differential proteomics during refrigerated storage. Journal of the Science of Food and Agriculture, 2021, 101, 3489-3499.	3.5	11
46	Effect of ball millingâ€assisted glycosylation modification on the structure and foaming property of egg white protein. Journal of Food Science, 2022, 87, 3117-3128.	3.1	11
47	Preparation and characterisation of a novel agar oligosaccharide–iron (<scp>III</scp>) complex. International Journal of Food Science and Technology, 2019, 54, 170-182.	2.7	10
48	Optimizing preparation conditions for Angiotensin-l-converting enzyme inhibitory peptides derived from enzymatic hydrolysates of ovalbumin. Food Science and Biotechnology, 2015, 24, 2193-2198.	2.6	9
49	Omics analysis of holoproteins and modified proteins of quail egg. Food Chemistry, 2020, 326, 126983.	8.2	9
50	Deterioration mechanism of minced mutton induced by Fenton oxidation treatment. LWT - Food Science and Technology, 2020, 134, 109980.	5.2	8
51	Screening and Identification of Antidepressant Active Ingredients from Puerariae Radix Extract and Study on Its Mechanism. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	4.0	8
52	Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Frontiers in Pharmacology, 2021, 12, 749035.	3.5	8
53	Rheological properties of a polysaccharide with highly sulfated groups extracted from <i>Gracialaria greville</i> . Journal of Food Process Engineering, 2017, 40, e12564.	2.9	5
54	Effect of malondialdehyde oxidation on structure and physicochemical properties of amandin. International Journal of Food Science and Technology, 2022, 57, 2646-2655.	2.7	5

Qun Huang

#	Article	IF	CITATIONS
55	Optimization of preparation process of egg white protein/ <i>ΰ</i> â€carrageenan composite film. Journal of Food Processing and Preservation, 2022, 46, e16167.	2.0	5
56	Mass spectrometry-based metabolomics identifies the effects of dietary oligosaccharide-zinc complex on serum and liver of zinc deficiency mice. Journal of Functional Foods, 2020, 65, 103777.	3.4	4
57	Transcriptome-based insights into the calcium transport mechanism of chick chorioallantoic membrane. Food Science and Human Wellness, 2022, 11, 383-392.	4.9	4
58	The effect of dealuminated jellyfish in mitigating toxicity on mice exposed to aluminum. Food and Chemical Toxicology, 2020, 138, 111181.	3.6	3
59	Identification, characterization and binding sites prediction of calcium transporter-embryo egg-derived egg white peptides. Journal of Food Measurement and Characterization, 2022, 16, 2948-2960.	3.2	2