Andres Alastuey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006822/publications.pdf

Version: 2024-02-01

393 papers 33,115 citations

95 h-index 155 g-index

515 all docs

515 docs citations

515 times ranked 19154 citing authors

#	Article	IF	CITATIONS
1	Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 2008, 39, 827-849.	3.8	812
2	Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 2002, 50, 413-423.	5.0	707
3	A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 2010, 44, 1308-1320.	4.1	654
4	Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 2020, 726, 138540.	8.0	610
5	PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment, 2001, 35, 6407-6419.	4.1	563
6	Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 2004, 38, 6547-6555.	4.1	531
7	Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmospheric Environment, 2009, 43, 2770-2780.	4.1	492
8	Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 2001, 35, 2433-2447.	4.1	482
9	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	4.9	449
10	Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Medicine, 2015, 12, e1001792.	8.4	399
11	Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment, 2007, 41, 7219-7231.	4.1	396
12	Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmospheric Environment, 2009, 43, 1650-1659.	4.1	387
13	Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes. Journal of Hazardous Materials, 2008, 154, 175-183.	12.4	375
14	African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmospheric Environment, 2009, 43, 4266-4277.	4.1	375
15	African dust outbreaks over the Mediterranean Basin during 2001–2011: PM ₁₀ concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmospheric Chemistry and Physics, 2013, 13, 1395-1410.	4.9	343
16	Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere, 2006, 65, 261-270.	8.2	330
17	New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmospheric Chemistry and Physics, 2011, 11, 6207-6227.	4.9	317
18	Coarse Particles From Saharan Dust and Daily Mortality. Epidemiology, 2008, 19, 800-807.	2.7	301

#	Article	IF	CITATIONS
19	Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 2011, 45, 6777-6787.	4.1	294
20	Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 2008, 42, 3964-3979.	4.1	287
21	Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmospheric Measurement Techniques, 2011, 4, 245-268.	3.1	284
22	AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in fiveÂsouthern European cities. Atmospheric Chemistry and Physics, 2016, 16, 3289-3309.	4.9	267
23	Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 2008, 75, 93-104.	5.0	266
24	Speciation and origin of PM10 and PM2.5 in Spain. Journal of Aerosol Science, 2004, 35, 1151-1172.	3.8	246
25	Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmospheric Environment, 2008, 42, 1677-1691.	4.1	243
26	Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 2014, 69, 200-212.	10.0	243
27	Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environmental Science and Pollution Research, 2011, 18, 260-269.	5.3	238
28	Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. International Journal of Coal Geology, 2010, 82, 51-67.	5.0	234
29	Chemical Tracers of Particulate Emissions from Commercial Shipping. Environmental Science & Emp; Technology, 2009, 43, 7472-7477.	10.0	227
30	A Fast Method for Recycling Fly Ash:Â Microwave-Assisted Zeolite Synthesis. Environmental Science & En	10.0	225
31	Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 2001, 35, 845-858.	4.1	220
32	Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmospheric Chemistry and Physics, 2011, 11, 6663-6685.	4.9	218
33	Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Science of the Total Environment, 2004, 328, 95-113.	8.0	216
34	PM speciation and sources in Mexico during the MILAGRO-2006 Campaign. Atmospheric Chemistry and Physics, 2008, 8, 111-128.	4.9	215
35	Wet and dry African dust episodes over eastern Spain. Journal of Geophysical Research, 2005, 110, .	3.3	210
36	Variability in regional background aerosols within the Mediterranean. Atmospheric Chemistry and Physics, 2009, 9, 4575-4591.	4.9	210

#	Article	IF	Citations
37	A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Science of the Total Environment, 2010, 408, 3070-3084.	8.0	208
38	Variability of Particle Number, Black Carbon, and PM ₁₀ , PM _{2.5} , and PM ₁ Levels and Speciation: Influence of Road Traffic Emissions on Urban Air Quality. Aerosol Science and Technology, 2010, 44, 487-499.	3.1	207
39	Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel, 2001, 80, 857-865.	6.4	201
40	Synthesis of Na-zeolites from fly ash. Fuel, 1997, 76, 793-799.	6.4	197
41	Source apportionment of urban fine and ultra-fine particle number concentration in a Western Mediterranean city. Atmospheric Environment, 2009, 43, 4407-4415.	4.1	189
42	Characterisation of TSP and PM2.5 at Izaña and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002). Atmospheric Environment, 2005, 39, 4715-4728.	4.1	187
43	Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmospheric Environment, 2002, 36, 5861-5875.	4.1	180
44	Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 2011, 102, 191-205.	4.1	176
45	A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmospheric Environment, 2007, 41, 5516-5524.	4.1	174
46	Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmospheric Environment, 2004, 38, 435-447.	4.1	173
47	Variability of levels and composition of PM ₁₀ and PM _{2.5} in the Barcelona metro system. Atmospheric Chemistry and Physics, 2012, 12, 5055-5076.	4.9	173
48	Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Science of the Total Environment, 1999, 242, 179-188.	8.0	171
49	Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere, 2006, 62, 171-180.	8.2	170
50	Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Science of the Total Environment, 2010, 408, 4569-4579.	8.0	163
51	The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain. Environmental Health Perspectives, 2011, 119, 1781-1787.	6.0	161
52	Levels of particulate matter in rural, urban and industrial sites in Spain. Science of the Total Environment, 2004, 334-335, 359-376.	8.0	159
53	Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays. Atmospheric Environment, 2007, 41, 913-922.	4.1	158
54	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	4.9	157

#	Article	IF	Citations
55	Sources of indoor and outdoor PM2.5 concentrations in primary schools. Science of the Total Environment, 2014, 490, 757-765.	8.0	153
56	Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmospheric Environment, 2002, 36, 3113-3125.	4.1	147
57	Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. International Journal of Coal Geology, 2011, 85, 2-22.	5.0	142
58	Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmospheric Environment, 2014, 92, 461-468.	4.1	141
59	A study on the relationship between mass concentrations, chemistry and number size distribution of urban fine aerosols in Milan, Barcelona and London. Atmospheric Chemistry and Physics, 2007, 7, 2217-2232.	4.9	138
60	Anthropogenic and natural influence on the PM10 and PM2.5 aerosol in Madrid (Spain). Analysis of high concentration episodes. Environmental Pollution, 2003, 125, 453-465.	7.5	137
61	Inter-comparison of receptor models for PM source apportionment: Case study in an industrial area. Atmospheric Environment, 2008, 42, 3820-3832.	4.1	134
62	Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean. Science of the Total Environment, 2008, 407, 527-540.	8.0	134
63	Monitoring the impact of desert dust outbreaks for air quality for health studies. Environment International, 2019, 130, 104867.	10.0	134
64	African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas. Atmospheric Chemistry and Physics, 2014, 14, 6759-6775.	4.9	132
65	A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmospheric Environment, 2016, 145, 346-364.	4.1	132
66	Size Fractionate Particulate Matter, Vehicle Traffic, and Case-Specific Daily Mortality in Barcelona, Spain. Environmental Science & Echnology, 2009, 43, 4707-4714.	10.0	130
67	Biomass burning contributions to urban aerosols in a coastal Mediterranean City. Science of the Total Environment, 2012, 427-428, 175-190.	8.0	130
68	Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmospheric Environment, 2007, 41, 5972-5983.	4.1	128
69	Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmospheric Environment, 2002, 36, 3101-3112.	4.1	127
70	Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmospheric Environment, 2006, 40, 6791-6803.	4.1	126
71	Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies. Atmospheric Environment, 2009, 43, 3989-3997.	4.1	125
72	Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain). Environment International, 2012, 48, 150-155.	10.0	125

#	Article	IF	CITATIONS
73	Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China. International Journal of Coal Geology, 2006, 66, 119-136.	5.0	124
74	2001–2012 trends on air quality in Spain. Science of the Total Environment, 2014, 490, 957-969.	8.0	123
75	Phase–mineral and chemical composition of composite samples from feed coals, bottom ashes and fly ashes at the Soma power station, Turkey. International Journal of Coal Geology, 2005, 61, 35-63.	5.0	120
76	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environment International, 2021, 147, 106326.	10.0	119
77	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
78	Trace element variation in size-fractionated African desert dusts. Journal of Arid Environments, 2008, 72, 1034-1045.	2.4	117
79	Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment. Science of the Total Environment, 2017, 578, 613-625.	8.0	117
80	Mineral composition of atmospheric particulates around a large coal-fired power station. Atmospheric Environment, 1996, 30, 3557-3572.	4.1	116
81	Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. Fuel, 2001, 80, 801-813.	6.4	116
82	Seasonal evolution of suspended particles around a large coal-fired power station. Atmospheric Environment, 1998, 32, 1963-1978.	4.1	115
83	Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21246-21249.	7.1	115
84	Urban NH3 levels and sources in a Mediterranean environment. Atmospheric Environment, 2012, 57, 153-164.	4.1	115
85	Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmospheric Chemistry and Physics, 2014, 14, 3533-3544.	4.9	115
86	Sources and processes affecting levels and composition of atmospheric aerosol in the western Mediterranean. Journal of Geophysical Research, 2002, 107, AAC 12-1.	3.3	114
87	Trends of particulate matter (PM _{2.5}) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002–2010). Atmospheric Chemistry and Physics, 2012, 12, 8341-8357.	4.9	114
88	Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 2006, 65, 2411-2418.	8.2	112
89	Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. Journal of Geophysical Research, 2006, 111, .	3.3	107
90	Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies. Journal of Geophysical Research, 2012, 117, .	3.3	107

#	Article	IF	Citations
91	Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 2020, 135, 105345.	10.0	106
92	Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel, 1995, 74, 1226-1231.	6.4	104
93	Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics, 2011, 11, 2917-2931.	4.9	104
94	Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmospheric Environment, 2013, 68, 33-44.	4.1	104
95	Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmospheric Chemistry and Physics, 2013, 13, 6185-6206.	4.9	104
96	ACTRIS ACSM intercomparison $\hat{a}\in$ Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	3.1	104
97	Organic and elemental carbon concentrations in carbonaceous aerosols during summer and winter sampling campaigns in Barcelona, Spain. Atmospheric Environment, 2006, 40, 2180-2193.	4.1	102
98	Variations of urban aerosols in the western Mediterranean. Atmospheric Environment, 2008, 42, 9052-9062.	4.1	102
99	Identification of fine (PM1) and coarse (PM10-1) sources of particulate matter in an urban environment. Atmospheric Environment, 2014, 89, 593-602.	4.1	100
100	Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 2015, 106, 129-138.	4.1	100
101	Modulation of Saharan dust export by the North African dipole. Atmospheric Chemistry and Physics, 2015, 15, 7471-7486.	4.9	99
102	Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment, 2008, 42, 1941-1957.	4.1	98
103	Variations of levels and composition of PM10 and PM2.5 at an insular site in the Western Mediterranean. Atmospheric Research, 2009, 94, 285-299.	4.1	96
104	Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmospheric Environment, 2016, 129, 114-124.	4.1	96
105	Seasonal evolution of suspended particles around a large coal-fired power station: Chemical characterization. Atmospheric Environment, 1998, 32, 719-731.	4.1	95
106	lce nucleating particles in the Saharan Air Layer. Atmospheric Chemistry and Physics, 2016, 16, 9067-9087.	4.9	93
107	Geochemistry of regional background aerosols in the Western Mediterranean. Atmospheric Research, 2009, 94, 422-435.	4.1	92
108	A comprehensive assessment of PM emissions from paved roads: Real-world Emission Factors and intense street cleaning trials. Science of the Total Environment, 2010, 408, 4309-4318.	8.0	92

#	Article	IF	Citations
109	Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmospheric Environment, 2010, 44, 1587-1596.	4.1	92
110	Variability of aerosol optical properties in the Western Mediterranean Basin. Atmospheric Chemistry and Physics, 2011, 11, 8189-8203.	4.9	92
111	Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere, 2007, 66, 1485-1493.	8.2	91
112	Impact of harbour emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol formation within the urban area. Science of the Total Environment, 2016, 571, 237-250.	8.0	90
113	Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmospheric Chemistry and Physics, 2011, 11, 9415-9430.	4.9	89
114	Events Affecting Levels and Seasonal Evolution of Airborne Particulate Matter Concentrations in the Western Mediterranean. Environmental Science & Events amp; Technology, 2003, 37, 216-222.	10.0	88
115	Influence of sea breeze circulation and road traffic emissions on the relationship between particle number, black carbon, PM1, PM2.5 and PM2.5–10 concentrations in a coastal city. Atmospheric Environment, 2008, 42, 6523-6534.	4.1	86
116	On the spatial distribution and evolution of ultrafine particles in Barcelona. Atmospheric Chemistry and Physics, 2013, 13, 741-759.	4.9	85
117	Lanthanoid Geochemistry of Urban Atmospheric Particulate Matter. Environmental Science & Emp; Technology, 2008, 42, 6502-6507.	10.0	84
118	Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after the Aznalcóllar spill, south-west Spain. Science of the Total Environment, 1999, 242, 41-55.	8.0	82
119	Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. International Journal of Coal Geology, 2009, 78, 16-26.	5.0	82
120	Intense winter atmospheric pollution episodes affecting the Western Mediterranean. Science of the Total Environment, 2010, 408, 1951-1959.	8.0	80
121	Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees,) Tj ETQq $1\ 1$	0,78431 4.9	4 rgBT /Over
122	Lessons from the COVID-19 air pollution decrease in Spain: Now what?. Science of the Total Environment, 2021, 779, 146380.	8.0	80
123	Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmospheric Environment, 2008, 42, 7851-7861.	4.1	79
124	Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. Atmospheric Environment, 2007, 41, 315-326.	4.1	77
125	Identification and Chemical Characterization of Industrial Particulate Matter Sources in Southwest Spain. Journal of the Air and Waste Management Association, 2006, 56, 993-1006.	1.9	76
126	Influence of Sampling Artefacts on Measured PM, OC, and EC Levels in Carbonaceous Aerosols in an Urban Area. Aerosol Science and Technology, 2006, 40, 107-117.	3.1	76

#	Article	IF	CITATIONS
127	Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area, Sichuan Province, China. International Journal of Coal Geology, 2012, 94, 271-282.	5.0	76
128	Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. Atmospheric Environment, 2013, 72, 81-88.	4.1	76
129	AÂEuropean aerosol phenomenology – 6: scattering properties of atmospheric aerosol particles from 28ÂACTRIS sites. Atmospheric Chemistry and Physics, 2018, 18, 7877-7911.	4.9	76
130	Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, south China. International Journal of Coal Geology, 2000, 45, 21-37.	5.0	75
131	Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain). Science of the Total Environment, 2004, 334-335, 111-123.	8.0	75
132	Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmospheric Environment, 2007, 41, 1-17.	4.1	75
133	A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: The Madrid air basin, a case study. Science of the Total Environment, 2008, 390, 495-506.	8.0	7 5
134	A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotoxicology and Environmental Safety, 2012, 78, 327-335.	6.0	75
135	Petrology, mineralogy and geochemistry of the Permian and Triassic coals in the Leping area, Jiangxi Province, southeast China. International Journal of Coal Geology, 2001, 48, 23-45.	5.0	74
136	Emission factors from road dust resuspension in a Mediterranean freeway. Atmospheric Environment, 2012, 61, 580-587.	4.1	73
137	Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Science of the Total Environment, 2013, 463-464, 875-883.	8.0	73
138	Summer ammonia measurements in a densely populated Mediterranean city. Atmospheric Chemistry and Physics, 2012, 12, 7557-7575.	4.9	72
139	Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China. International Journal of Coal Geology, 1997, 34, 89-109.	5.0	71
140	Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmospheric Environment, 2004, 38, 4979-4992.	4.1	70
141	Determination of element affinities by density fractionation of bulk coal samples. Fuel, 2001, 80, 83-96.	6.4	69
142	Effect of fireworks events on urban background trace metal aerosol concentrations: Is the cocktail worth the show?. Journal of Hazardous Materials, 2010, 183, 945-949.	12.4	69
143	On the quantification of atmospheric carbonate carbon by thermal/optical analysis protocols. Atmospheric Measurement Techniques, 2011, 4, 2409-2419.	3.1	69
144	Chemical fingerprint and impact of shipping emissions over a western Mediterranean metropolis: Primary and aged contributions. Science of the Total Environment, 2013, 463-464, 497-507.	8.0	69

#	Article	IF	Citations
145	Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor. Atmospheric Chemistry and Physics, 2015, 15, 6379-6391.	4.9	69
146	Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in <scp>B</scp> arcelona. Indoor Air, 2016, 26, 391-402.	4.3	69
147	PM levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations. Atmospheric Environment, 2003, 37, 2879-2891.	4.1	68
148	Natural sources of atmospheric aerosols influencing air quality across Europe. Science of the Total Environment, 2014, 472, 825-833.	8.0	68
149	Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China. Journal of Environmental Monitoring, 2006, 8, 1049-1059.	2.1	67
150	Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain. Atmospheric Chemistry and Physics, 2012, 12, 10693-10707.	4.9	67
151	AIRUSE-LIFE +: estimation of natural source contributions to urban ambient air PM ₁₀ and PM _{2. 5} concentrations in southern Europe – implications to compliance with limit values. Atmospheric Chemistry and Physics. 2017. 17. 3673-3685.	4.9	67
152	Spatial and temporal variability of PM levels and composition in a complex summer atmospheric scenario in Barcelona (NE Spain). Atmospheric Environment, 2005, 39, 5343-5361.	4.1	66
153	Arsenic speciation study of PM2.5 in an urban area near a copper smelter. Atmospheric Environment, 2008, 42, 6487-6495.	4.1	66
154	Assessment of airborne particulate levels in Spain in relation to the new EU-directive. Atmospheric Environment, 2001, 35, 43-53.	4.1	65
155	Determination of Drugs of Abuse in Airborne Particles by Pressurized Liquid Extraction and Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Analytical Chemistry, 2009, 81, 4382-4388.	6.5	65
156	African dust contribution to ambient aerosol levels across central Spain: Characterization of long-range transport episodes of desert dust. Atmospheric Research, 2013, 127, 117-129.	4.1	65
157	An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environmental Science and Pollution Research, 2016, 23, 15133-15148.	5.3	65
158	Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmospheric Environment, 2017, 169, 36-53.	4.1	65
159	African dust and air quality over Spain: Is it only dust that matters?. Science of the Total Environment, 2019, 686, 737-752.	8.0	65
160	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	3.1	65
161	Short-term health effects from outdoor exposure to biomass burning emissions: A review. Science of the Total Environment, 2021, 781, 146739.	8.0	64
162	Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmospheric Research, 2011, 99, 518-527.	4.1	63

#	Article	IF	Citations
163	Source apportionment of ambient PM2.5 at five spanish centres of the european community respiratory health survey (ECRHS II). Atmospheric Environment, 2007, 41, 1395-1406.	4.1	62
164	Atmospheric particulate matter and air quality in the Mediterranean: a review. Environmental Chemistry Letters, 2007, 5, 1-7.	16.2	62
165	Characterising exposure to PM aerosols for an epidemiological study. Atmospheric Environment, 2008, 42, 1552-1568.	4.1	62
166	Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study. Atmospheric Chemistry and Physics, 2013, 13, 5173-5187.	4.9	62
167	Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmospheric Environment, 2015, 123, 220-228.	4.1	62
168	Effect of rain events on the mobility of road dust load in two Dutch and Spanish roads. Atmospheric Environment, 2012, 62, 352-358.	4.1	61
169	Ultrafine particle and fine trace metal (As, Cd, Cu, Pb and Zn) pollution episodes induced by industrial emissions in Huelva, SW Spain. Atmospheric Environment, 2012, 61, 507-517.	4.1	61
170	A review of methods for long term in situ characterization of aerosol dust. Aeolian Research, 2012, 6, 55-74.	2.7	61
171	Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks. Science of the Total Environment, 2014, 494-495, 283-289.	8.0	61
172	Phase-mineral and chemical composition of fractions separated from composite fly ashes at the Soma power station, Turkey. International Journal of Coal Geology, 2005, 61, 65-85.	5.0	59
173	Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmospheric Chemistry and Physics, 2014, 14, 4459-4472.	4.9	59
174	Effectiveness of commercial face masks to reduce personal PM exposure. Science of the Total Environment, 2019, 650, 1582-1590.	8.0	59
175	Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain. International Journal of Coal Geology, 2001, 45, 247-265.	5.0	58
176	Evaluating urban PM10 pollution benefit induced by street cleaning activities. Atmospheric Environment, 2009, 43, 4472-4480.	4.1	58
177	Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmospheric Chemistry and Physics, 2020, 20, 8867-8908.	4.9	58
178	Short-term variability of mineral dust, metals and carbon emission from road dust resuspension. Atmospheric Environment, 2013, 74, 134-140.	4.1	57
179	Near-real-time processing of a ceilometer network assisted with sun-photometer data: monitoring a dust outbreak over the Iberian Peninsula. Atmospheric Chemistry and Physics, 2017, 17, 11861-11876.	4.9	57
180	Geochemistry and origin of PM10 in the Huelva region, Southwestern Spain. Environmental Research, 2007, 103, 305-316.	7. 5	56

#	Article	IF	CITATIONS
181	Natural and Anthropogenic Contributions to PM10 and PM2.5 in an Urban Area in the Western Mediterranean Coast. Water, Air, and Soil Pollution, 2008, 192, 227-238.	2.4	56
182	Bulk deposition in a rural area located around a large coal-fired power station, northeast Spain. Environmental Pollution, 1999, 106, 359-367.	7.5	55
183	Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environment International, 2018, 111, 144-151.	10.0	55
184	Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean. Atmospheric Chemistry and Physics, 2016, 16, 12567-12586.	4.9	54
185	Geochemistry of PM ₁₀ over Europe during the EMEP intensive measurement periods in summerÂ2012 and winterÂ2013. Atmospheric Chemistry and Physics, 2016, 16, 6107-6129.	4.9	54
186	Outdoor and indoor UFP in primary schools across Barcelona. Science of the Total Environment, 2014, 493, 943-953.	8.0	53
187	Urban NH3 levels and sources in six major Spanish cities. Chemosphere, 2015, 119, 769-777.	8.2	53
188	Effect of public transport strikes on air pollution levels in Barcelona (Spain). Science of the Total Environment, 2018, 610-611, 1076-1082.	8.0	52
189	Contribution of harbour activities to levels of particulate matter in a harbour area: Hada Project-Tarragona Spain. Atmospheric Environment, 2007, 41, 6366-6378.	4.1	51
190	Ultrafine particle formation in the inland sea breeze airflow in Southwest Europe. Atmospheric Chemistry and Physics, 2010, 10, 9615-9630.	4.9	51
191	Road dust contribution to PM levels – Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization. Atmospheric Environment, 2011, 45, 2193-2201.	4.1	51
192	Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Doñana area, Southwest Spain. Atmospheric Environment, 2000, 34, 239-253.	4.1	50
193	Chemical characterisation of PM episodes in NE Spain. Chemosphere, 2006, 62, 947-956.	8.2	50
194	Characterization and origin of EC and OC particulate matter near the Doñana National Park (SW) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
195	A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe. Atmospheric Environment, 2016, 144, 133-145.	4.1	50
196	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Science of the Total Environment, 2017, 584-585, 849-855.	8.0	50
197	Mineralogy and geochemistry of the coals from the Chongqing and Southeast Hubei coal mining districts, South China. International Journal of Coal Geology, 2007, 71, 263-275.	5.0	49
198	Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. Journal of Environmental Monitoring, 2010, 12, 854.	2.1	49

#	Article	IF	Citations
199	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	3.3	49
200	On the origin of the highest ozone episodes in Spain. Science of the Total Environment, 2016, 572, 379-389.	8.0	49
201	Trends analysis of PM source contributions and chemical tracers in NE Spain during 2004–2014: a multi-exponential approach. Atmospheric Chemistry and Physics, 2016, 16, 11787-11805.	4.9	48
202	Short-term exposure to traffic-related air pollution and ischemic stroke onset in Barcelona, Spain. Environmental Research, 2018, 162, 160-165.	7.5	48
203	Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmospheric Environment, 2012, 61, 482-489.	4.1	47
204	Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. Science of the Total Environment, 2018, 616-617, 720-729.	8.0	47
205	Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. International Journal of Coal Geology, 2003, 55, 103-115.	5.0	46
206	Geological controls on the quality of coals from the West Shandong mining district, Eastern China. International Journal of Coal Geology, 1999, 42, 63-88.	5.0	45
207	Phenomenology of high-ozone episodes in NE Spain. Atmospheric Chemistry and Physics, 2017, 17, 2817-2838.	4.9	45
208	Characterization of atmospheric aerosols by SEM in a rural area in the western part of M \tilde{A} \otimes xico and its relation with different pollution sources. Atmospheric Environment, 2009, 43, 6159-6167.	4.1	44
209	Effect of ceramic industrial particulate emission control on key components of ambient PM10. Journal of Environmental Management, 2009, 90, 2558-2567.	7.8	44
210	Impact of fugitive emissions in ambient PM levels and compositionA case study in Southeast Spain. Science of the Total Environment, 2010, 408, 4999-5009.	8.0	44
211	Size distribution and chemical composition of metalliferous stack emissions in the San Roque petroleum refinery complex, southern Spain. Journal of Hazardous Materials, 2011, 190, 713-722.	12.4	44
212	Atmospheric phosphorus deposition in a near-coastal rural site in the NE Iberian Peninsula and its role in marine productivity. Atmospheric Environment, 2012, 49, 361-370.	4.1	44
213	PM10 and PM2.5 sources at an insular location in the western Mediterranean by using source apportionment techniques. Science of the Total Environment, 2013, 456-457, 267-277.	8.0	44
214	Effects of Road Dust Suppressants on PM Levels in a Mediterranean Urban Area. Environmental Science & Emp; Technology, 2014, 48, 8069-8077.	10.0	44
215	Determinants of aerosol lung-deposited surface area variation in an urban environment. Science of the Total Environment, 2015, 517, 38-47.	8.0	44
216	Coal geology and coal quality of the Miocene Mugla basin, southwestern Anatolia, Turkey. International Journal of Coal Geology, 1999, 41, 311-332.	5.0	43

#	Article	IF	CITATIONS
217	PM10 speciation and determination of air quality target levels. A case study in a highly industrialized area of Spain. Science of the Total Environment, 2007, 372, 382-396.	8.0	43
218	Geochemical characterization of Cu-smelter emission plumes with impact in an urban area of SW Spain. Atmospheric Research, 2010, 96, 590-601.	4.1	43
219	High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmospheric Research, 2010, 96, 633-644.	4.1	43
220	Peculiarities in atmospheric particle number and size-resolved speciation in an urban area in the western Mediterranean: Results from the DAURE campaign. Atmospheric Environment, 2011, 45, 5282-5293.	4.1	42
221	Evaluation of the changes in the Madrid metropolitan area influencing air quality: Analysis of 1999–2008 temporal trend of particulate matter. Atmospheric Environment, 2012, 57, 175-185.	4.1	42
222	Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin. Atmospheric Chemistry and Physics, 2014, 14, 6443-6460.	4.9	42
223	Phenomenology of summer ozone episodes over the Madrid Metropolitan Area, central Spain. Atmospheric Chemistry and Physics, 2018, 18, 6511-6533.	4.9	42
224	Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. Atmospheric Environment, 2005, 39, 6109-6120.	4.1	41
225	The identification of metallic elements in airborne particulate matter derived from fossil fuels at Puertollano, Spain. International Journal of Coal Geology, 2007, 71, 122-128.	5.0	41
226	Impact of traffic intensity and pavement aggregate size on road dust particles loading. Atmospheric Environment, 2013, 77, 711-717.	4.1	41
227	European aerosol phenomenology â° 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	10.0	41
228	Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. Environmental Geology, 2006, 51, 121-132.	1.2	40
229	Using PM10 geochemical maps for defining the origin of atmospheric pollution in Andalusia (Southern) Tj ETQq1	1 0.78431 4.1	4 rgBT /Ov€ 40°
230	Manganese in the urban atmosphere: identifying anomalous concentrations and sources. Environmental Science and Pollution Research, 2011, 18, 173-183.	5.3	40
231	Three years of aerosol mass, black carbon and particle number concentrations at Montsec (southern) Tj ETQq1 1 (0.784314	rgBT /Ove <mark>rl</mark>
232	Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors. Faraday Discussions, 2016, 189, 337-359.	3.2	40
233	Drugs of abuse in airborne particulates in urban environments. Environment International, 2010, 36, 527-534.	10.0	39
234	Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires. Atmospheric Environment, 2014, 89, 85-92.	4.1	39

#	Article	IF	Citations
235	Impact of the implementation of PM abatement technology on the ambient air levels of metals in a highly industrialised area. Atmospheric Environment, 2007, 41, 1026-1040.	4.1	38
236	Partitioning of magnetic particles in PM10, PM2.5 and PM1 aerosols in the urban atmosphere of Barcelona (Spain). Environmental Pollution, 2014, 188, 109-117.	7.5	38
237	Spatiotemporal evolution of a severe winter dust event in the western Mediterranean: Aerosol optical and physical properties. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4052-4069.	3.3	38
238	Sources of natural and anthropogenic sulphur around the Teruel power station, NE Spain. Inferences from sulphur isotope geochemistry. Atmospheric Environment, 2000, 34, 333-345.	4.1	37
239	Levels and chemical composition of PM in a city near a large Cu-smelter in Spain. Journal of Environmental Monitoring, 2011, 13, 1276.	2.1	37
240	New particle formation at ground level and in the vertical column over the Barcelona area. Atmospheric Research, 2015, 164-165, 118-130.	4.1	37
241	A new method for the simultaneous determination of PAH and metals in samples of atmospheric particulate matter. Atmospheric Environment, 2003, 37, 4171-4175.	4.1	36
242	Joint analysis of continental and regional background environments in the western Mediterranean: PM& t;sub>1& t; sub> and PM& t;sub>10& t; sub> concentrations and composition. Atmospheric Chemistry and Physics, 2015, 15, 1129-1145.	4.9	36
243	Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. Environment International, 2016, 88, 142-149.	10.0	36
244	Overview of the NOAA/ESRL Federated Aerosol Network. Bulletin of the American Meteorological Society, 2019, 100, 123-135.	3.3	36
245	Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation. Environmental Science and Pollution Research, 2016, 23, 6400-6413.	5.3	35
246	2005–2014 trends of PM10 source contributions in an industrialized area of southern Spain. Environmental Pollution, 2018, 236, 570-579.	7.5	35
247	The second ACTRIS inter-comparison (2016) for Aerosol Chemical Speciation Monitors (ACSM): Calibration protocols and instrument performance evaluations. Aerosol Science and Technology, 2019, 53, 830-842.	3.1	35
248	Potential Environmental Applications of Pure Zeolitic Material Synthesized from Fly Ash. Journal of Environmental Engineering, ASCE, 2001, 127, 994-1002.	1.4	34
249	Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. Atmospheric Environment, 2008, 42, 9007-9017.	4.1	34
250	Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic–Mediterranean 2008 Scholar Ship cruise (Part II): Natural versus anthropogenic influences revealed by PM10 trace element geochemistry. Atmospheric Environment, 2010, 44, 2563-2576.	4.1	34
251	Monitoring of sources and atmospheric processes controlling air quality in an urban Mediterranean environment. Atmospheric Environment, 2010, 44, 4879-4890.	4.1	34
252	Assessing the Performance of Methods to Detect and Quantify African Dust in Airborne Particulates. Environmental Science & Detect and Quantify African Dust in Airborne Particulates.	10.0	34

#	Article	IF	Citations
253	Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality. Atmospheric Chemistry and Physics, 2013, 13, 1411-1424.	4.9	34
254	Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. Atmospheric Environment, 2015, 106, 392-401.	4.1	34
255	Cocaine and other illicit drugs in airborne particulates in urban environments: A reflection of social conduct and population size. Environmental Pollution, 2011, 159, 1241-1247.	7.5	33
256	Size distribution and chemical composition of particulate matter stack emissions in and around a copper smelter. Atmospheric Environment, 2014, 98, 271-282.	4.1	33
257	Road Dust Emission Sources and Assessment of Street Washing Effect. Aerosol and Air Quality Research, 2014, 14, 734-743.	2.1	33
258	Concentration and Sources of PM10 and its Constituents in Alsasua, Spain. Water, Air, and Soil Pollution, 2006, 174, 385-404.	2.4	32
259	Particulate matter and gaseous pollutants in the Mediterranean Basin: Results from the MED-PARTICLES project. Science of the Total Environment, 2014, 488-489, 297-315.	8.0	32
260	Impact of aerosol particle sources on optical properties in urban, regional and remote areas in the north-western Mediterranean. Atmospheric Chemistry and Physics, 2018, 18, 1149-1169.	4.9	31
261	Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach. Atmospheric Measurement Techniques, 2021, 14, 6335-6355.	3.1	31
262	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics, 2021, 21, 17185-17223.	4.9	31
263	Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona during SAPUSS. Atmospheric Chemistry and Physics, 2013, 13, 4983-4996.	4.9	30
264	Arsenic species in atmospheric particulate matter as tracer of the air quality of Do $ ilde{A}$ ±ana Natural Park (SW Spain). Chemosphere, 2015, 119, 1296-1303.	8.2	30
265	Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmospheric Chemistry and Physics, 2018, 18, 16601-16618.	4.9	30
266	Intercomparison of a portable and two stationary mobility particle sizers for nanoscale aerosol measurements. Aerosol Science and Technology, 2016, 50, 653-668.	3.1	29
267	PM source apportionment and trace metallic aerosol affinities during atmospheric pollution episodes: a case study from Puertollano, Spain. Journal of Environmental Monitoring, 2006, 8, 1060-1068.	2.1	28
268	PM sources in a highly industrialised area in the process of implementing PM abatement technology. Quantification and evolution. Journal of Environmental Monitoring, 2007, 9, 1071.	2.1	28
269	Are Saharan dust intrusions increasing the risk of meningococcal meningitis?. International Journal of Infectious Diseases, 2011, 15, e503.	3.3	28
270	Variations in school playground and classroom atmospheric particulate chemistry. Atmospheric Environment, 2014, 91, 162-171.	4.1	28

#	Article	IF	CITATIONS
271	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	4.9	27
272	Molecular insights into new particle formation in Barcelona, Spain. Atmospheric Chemistry and Physics, 2020, 20, 10029-10045.	4.9	27
273	Characterisation of atmospheric particulates around a coal-fired power station. International Journal of Coal Geology, 1999, 40, 175-188.	5.0	26
274	Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan. Science of the Total Environment, 2012, 424, 182-192.	8.0	26
275	Multicriteria approach to interpret the variability of the levels of particulate matter and gaseous pollutants in the Madrid metropolitan area, during the 1999–2012 period. Atmospheric Environment, 2015, 109, 205-216.	4.1	26
276	Real-time indoor and outdoor measurements of black carbon at primary schools. Atmospheric Environment, 2015, 120, 417-426.	4.1	26
277	Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites. Science of the Total Environment, 2021, 768, 145282.	8.0	26
278	Zinc contamination in the bottom and suspended sediments of the Guadalquivir estuary after the Aznalcollar spill (south-western Spain). Control of hydrodynamic processes. Science of the Total Environment, 1999, 242, 211-220.	8.0	25
279	Characterisation of dust material emitted during harbour operations (HADA Project). Atmospheric Environment, 2007, 41, 6331-6343.	4.1	25
280	Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. Science of the Total Environment, 2017, 593-594, 543-551.	8.0	25
281	Retrieval of aerosol properties from ceilometer and photometer measurements: long-term evaluation with in situ data and statistical analysis at Montsec (southern Pyrenees). Atmospheric Measurement Techniques, 2019, 12, 3255-3267.	3.1	25
282	Increase in secondary organic aerosol in an urban environment. Atmospheric Chemistry and Physics, 2021, 21, 8323-8339.	4.9	25
283	Determination of pyritic sulphur and organic matter contents in Spanish subbituminous coals by X-ray power diffraction. International Journal of Coal Geology, 1993, 22, 279-293.	5.0	24
284	Airborne particulate matter and premature deaths in urban Europe: the new WHO guidelines and the challenge ahead as illustrated by Spain. European Journal of Epidemiology, 2007, 22, 1-5.	5.7	24
285	Controls on hourly variations in urban background air pollutant concentrations. Atmospheric Environment, 2009, 43, 4178-4186.	4.1	24
286	Effects of Local and Saharan Particles on Cardiovascular Disease Mortality. Epidemiology, 2012, 23, 768-769.	2.7	24
287	Case studies of new particle formation and evaporation processes in the western Mediterranean regional background. Atmospheric Environment, 2013, 81, 651-659.	4.1	24
288	Carbon emissions in Mediterranean shrubland wildfires: An experimental approach. Atmospheric Environment, 2013, 69, 86-93.	4.1	24

#	Article	IF	CITATIONS
289	Soluble iron dust export in the high altitude Saharan Air Layer. Atmospheric Environment, 2016, 133, 49-59.	4.1	24
290	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. Atmospheric Chemistry and Physics, 2020, 20, 409-429.	4.9	24
291	Daily evolution of sulphate aerosols in a rural area, northeastern Spainâ€"elucidation of an atmospheric reservoir effect. Environmental Pollution, 1999, 105, 397-407.	7.5	23
292	Identification of chemical tracers in the characterisation and source apportionment of inhalable inorganic airborne particles: an overview. Biomarkers, 2009, 14, 17-22.	1.9	23
293	Profiling transient daytime peaks in urban air pollutants: city centre traffic hotspot versus urban background concentrations. Journal of Environmental Monitoring, 2009, 11, 1535.	2.1	23
294	Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19243.	1.6	23
295	Impact of North America on the aerosol composition in the North Atlantic free troposphere. Atmospheric Chemistry and Physics, 2017, 17, 7387-7404.	4.9	23
296	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	1.4	23
297	Spatial and temporal variations in inhalable CuZnPb aerosols within the Mexico City pollution plume. Journal of Environmental Monitoring, 2008, 10, 370.	2.1	22
298	Quantifying Dry and Wet Deposition Fluxes in Two Regions of Contrasting African Influence: The NE Iberian Peninsula and the Canary Islands. Atmosphere, 2017, 8, 86.	2.3	22
299	Evaluation of the Semi-Continuous OCEC analyzer performance with the EUSAAR2 protocol. Science of the Total Environment, 2020, 747, 141266.	8.0	22
300	Physico-chemical characterisation of atmospheric aerosols in a rural area affected by the aznalcollar toxic spill, south-west Spain during the soil reclamation activities. Science of the Total Environment, 1999, 242, 89-104.	8.0	21
301	Controlling influences on daily fluctuations of inhalable particles and gas concentrations: Local versus regional and exotic atmospheric pollutants at Puertollano, Spain. Atmospheric Environment, 2006, 40, 3207-3218.	4.1	21
302	Intercomparisons of Mobility Size Spectrometers and Condensation Particle Counters in the Frame of the Spanish Atmospheric Observational Aerosol Network. Aerosol Science and Technology, 2015, 49, 777-785.	3.1	21
303	2005–2017 ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area. Atmospheric Chemistry and Physics, 2019, 19, 7445-7465.	4.9	21
304	Analysis of summer O ₃ in the Madrid air basin with the LOTOS-EUROS chemical transport model. Atmospheric Chemistry and Physics, 2019, 19, 14211-14232.	4.9	21
305	Chemistry of dry and wet atmospheric deposition over the Balearic Islands, NW Mediterranean: Source apportionment and African dust areas. Science of the Total Environment, 2020, 747, 141187.	8.0	21
306	The effect of meteorological conditions and atmospheric composition in the occurrence and development of new particle formation (NPF) events in Europe. Atmospheric Chemistry and Physics, 2021, 21, 3345-3370.	4.9	21

#	Article	IF	CITATIONS
307	Determination of direct and fugitive PM emissions in a Mediterranean harbour by means of classic and novel tracer methods. Journal of Environmental Management, 2009, 91, 133-141.	7.8	20
308	Overview of the meteorology and transport patterns during the DAURE field campaign and their impact to PM observations. Atmospheric Environment, 2013, 77, 607-620.	4.1	20
309	Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies. Atmospheric Chemistry and Physics, 2017, 17, 8939-8958.	4.9	20
310	Temporal and spatial variability of atmospheric particle number size distributions across Spain. Atmospheric Environment, 2018, 190, 146-160.	4.1	20
311	New Directions: The future of European urban air quality monitoring. Atmospheric Environment, 2014, 87, 258-260.	4.1	19
312	Comprehensive monitoring of the occurrence of 22 drugs of abuse and transformation products in airborne particulate matter in the city of Barcelona. Science of the Total Environment, 2015, 532, 344-352.	8.0	19
313	Industrial sources of primary and secondary organic aerosols in two urban environments in Spain. Environmental Science and Pollution Research, 2015, 22, 10413-10424.	5. 3	19
314	Air quality trends in an industrialised area of SW Spain. Journal of Cleaner Production, 2018, 186, 465-474.	9.3	19
315	Physicochemical Characterization of Spanish Fly Ashes. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1999, 21, 883-898.	0.5	18
316	Extraction of Water-Soluble Impurities from Fly Ash. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2000, 22, 733-749.	0.5	18
317	Mass Balance of Major and Trace Elements in a Coal-Fired Power Plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1311-1320.	2.3	18
318	Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999–2008. Procedia Environmental Sciences, 2011, 4, 198-208.	1.4	18
319	Levels, composition and source apportionment of rural background PM10 in western Mexico (state of) Tj ETQq1 I	1 9.78431	4 rgBT /Ove
320	Vertical and horizontal fall-off of black carbon and NO2 within urban blocks. Science of the Total Environment, 2019, 686, 236-245.	8.0	18
321	Compositional changes of PM2.5 in NE Spain during 2009–2018: A trend analysis of the chemical composition and source apportionment. Science of the Total Environment, 2021, 795, 148728.	8.0	18
322	Study of urban atmospheric pollution in Navarre (Northern Spain). Environmental Monitoring and Assessment, 2007, 134, 137-151.	2.7	17
323	Weak Pressure Gradient over the Iberian Peninsula and African Dust Outbreaks: A New Dust Long-Transport Scenario. Bulletin of the American Meteorological Society, 2012, 93, 1125-1132.	3.3	17
324	Assessment of the variability of atmospheric pollution in National Parks of mainland Spain. Atmospheric Environment, 2016, 132, 332-344.	4.1	17

#	Article	IF	Citations
325	Spatio-temporal patterns of high summer ozone events in the Madrid Basin, Central Spain. Atmospheric Environment, 2018, 185, 207-220.	4.1	17
326	How can ventilation be improved on public transportation buses? Insights from CO2 measurements. Environmental Research, 2022, 205, 112451.	7.5	17
327	Associations between sources of particle number and mortality in four European cities. Environment International, 2021, 155, 106662.	10.0	16
328	Characterization of a long range transport pollution episode affecting PM in SW Spain. Journal of Environmental Monitoring, 2008, 10, 1158.	2.1	15
329	Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides. Journal of Environmental Monitoring, 2012, 14, 2718.	2.1	15
330	Nanoparticle formation and emission during laser ablation of ceramic tiles. Journal of Aerosol Science, 2018, 126, 152-168.	3.8	15
331	Source apportionment of urban PM1 in Barcelona during SAPUSS using organic and inorganic components. Environmental Science and Pollution Research, 2019, 26, 32114-32127.	5.3	15
332	Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment. Journal of Geophysical Research, 2012, 117, .	3.3	14
333	Variation of PM2.5 concentrations in relation to street washing activities. Atmospheric Environment, 2012, 54, 465-469.	4.1	14
334	Variability of air pollutants, and PM composition and sources at a regional background site in the Balearic Islands: Review of western Mediterranean phenomenology from a 3-year study. Science of the Total Environment, 2020, 717, 137177.	8.0	14
335	Estimates of atmospheric particle emissions from bulk handling of dusty materials in Spanish Harbours. Atmospheric Environment, 2007, 41, 6356-6365.	4.1	13
336	Fine Particle Receptor Modeling in the Atmosphere of Mexico City. Journal of the Air and Waste Management Association, 2009, 59, 1417-1428.	1.9	13
337	Bedrock controls on the mineralogy and chemistry of PM10 extracted from Australian desert sediments. Environmental Geology, 2009, 57, 411-420.	1.2	13
338	Simple estimates of vehicle-induced resuspension rates. Journal of Environmental Management, 2011, 92, 2855-2859.	7.8	13
339	2005–2018 trends in ozone peak concentrations and spatial contributions in the Guadalquivir Valley, southern Spain. Atmospheric Environment, 2021, 254, 118385.	4.1	13
340	A phenomenology of new particle formation (NPF) at 13 European sites. Atmospheric Chemistry and Physics, 2021, 21, 11905-11925.	4.9	13
341	Synthesis of industrial minerals from fly ash. Coal Science and Technology, 1995, , 1979-1982.	0.0	12
342	Characterization of organic aerosol at a rural site influenced by olive waste biomass burning. Chemosphere, 2020, 248, 125896.	8.2	12

#	Article	IF	Citations
343	Anthropogenic Perturbations to the Atmospheric Molybdenum Cycle. Global Biogeochemical Cycles, 2021, 35, e2020GB006787.	4.9	12
344	Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements. Atmospheric Chemistry and Physics, 2021, 21, 9269-9287.	4.9	12
345	Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor. Atmospheric Environment, 2007, 41, 6344-6355.	4.1	11
346	Source contribution and origin of PM10 and arsenic in a complex industrial region (Huelva, SW Spain). Environmental Pollution, 2021, 274, 116268.	7.5	11
347	The case of a southern European glacier which survived Roman and medieval warm periods but is disappearing under recent warming. Cryosphere, 2021, 15, 1157-1172.	3.9	11
348	Wet-only sequential deposition in a rural area in north-eastern Spain. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 40.	1.6	10
349	A simplified approach to the indirect evaluation of the chemical composition of atmospheric aerosols from PM mass concentrations. Atmospheric Environment, 2010, 44, 5112-5121.	4.1	10
350	An evaluation of mass, number concentration, chemical composition and types of particles in a cafeteria before and after the passage of an antismoking law. Particuology, 2013, 11, 527-532.	3.6	10
351	Vertical and horizontal variability of PM ₁₀ source contributions in Barcelona during SAPUSS. Atmospheric Chemistry and Physics, 2016, 16, 6785-6804.	4.9	10
352	Trace element fractionation processes in resuspended mineral aerosols extracted from Australian continental surface materials. Soil Research, 2008, 46, 128.	1.1	10
353	Primary and secondary organic winter aerosols in Mediterranean cities under different mixing layer conditions (Barcelona and Granada). Environmental Science and Pollution Research, 2022, 29, 36255-36272.	5.3	10
354	Absorption enhancement of black carbon particles in a Mediterranean city and countryside: effect of particulate matter chemistry, ageing and trend analysis. Atmospheric Chemistry and Physics, 2022, 22, 8439-8456.	4.9	10
355	Accumulation of Pb and Zn in Sea Urchin Plates and Spines Related to their Different Crystalline Structure. Marine Pollution Bulletin, 2000, 40, 647-649.	5.0	9
356	Physicochemical variations in atmospheric aerosols recorded at sea onboard the Atlantic–Mediterranean 2008 Scholar Ship cruise (Part I): Particle mass concentrations, size ratios, and main chemical components. Atmospheric Environment, 2010, 44, 2552-2562.	4.1	9
357	Road traffic and sandy playground influence on ambient pollutants in schools. Atmospheric Environment, 2015, 111, 94-102.	4.1	9
358	Relating high ozone, ultrafine particles, and new particle formation episodes using cluster analysis. Atmospheric Environment: X, 2019, 4, 100051.	1.4	9
359	Wet-only sequential deposition in a rural area in north-eastern Spain. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 40-52.	1.6	8
360	Variations in Fly Ash Composition from the Soma Power Plant, Turkey. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 2005, 27, 1473-1481.	0.5	8

#	Article	IF	Citations
361	Particulate Matter Concentrations in a Middle Eastern City – An Insight to Sand and Dust Storm Episodes. Aerosol and Air Quality Research, 2020, 20, 2780-2792.	2.1	8
362	Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City. Atmosphere, 2022, 13, 197.	2.3	8
363	2011–2020 trends of urban and regional ammonia in and around Barcelona, NE Spain. Chemosphere, 2022, 304, 135347.	8.2	8
364	Trace element contents in atmospheric suspended particles: inferences from instrumental neutron activation analysis. Fresenius' Journal of Analytical Chemistry, 1997, 357, 934-940.	1.5	7
365	Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical properties. Atmospheric Chemistry and Physics, 2021, 21, 431-455.	4.9	7
366	Origin of PM10 Pollution Episodes in an Industrialized Mega-City in Central China. Aerosol and Air Quality Research, 2014, 14, 338-346.	2.1	7
367	Understanding the local and remote source contributions to ambient O3 during a pollution episode using a combination of experimental approaches in the Guadalquivir valley, southern Spain. Science of the Total Environment, 2021, 777, 144579.	8.0	6
368	New Directions: Legislative considerations for controlling exposure to atmospheric aerosols in rural areas. Atmospheric Environment, 2008, 42, 8979-8984.	4.1	5
369	Trends in primary and secondary particle number concentrations in urban and regional environments in NE Spain. Atmospheric Environment, 2021, 244, 117982.	4.1	5
370	Applicability of benchtop multi-wavelength polar photometers to off-line measurements of the Multi-Angle Absorption Photometer (MAAP) samples. Journal of Aerosol Science, 2021, 152, 105701.	3.8	5
371	Estudio y evaluación de la contaminación atmosférica por material particulado en España: necesidades derivadas de la propuesta de la directiva del consejo relativa a partÃculas PM ₁₀ y PM _{2.5} e implicaciones en la industria cerámica. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 135-148.	1.9	5
372	Short-term effect of air pollution on attention function in adolescents (ATENC!Ó): A randomized controlled trial in high schools in Barcelona, Spain. Environment International, 2021, 156, 106614.	10.0	4
373	Case Studies of Source Apportionment and Suggested Measures at Southern European Cities. Issues in Environmental Science and Technology, 2016, , 168-263.	0.4	4
374	Open air mineral treatment operations and ambient air quality: assessment and source apportionment. Journal of Environmental Monitoring, 2012, 14, 2939.	2.1	3
375	Mechanisms of Climate Variability, Air Quality and Impacts of Atmospheric Constituents in the Mediterranean Region. Advances in Global Change Research, 2013, , 119-156.	1.6	3
376	Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. Atmospheric Environment: X, 2021, 12, 100145.	1.4	3
377	X-ray diffraction analysis of oxidizable sulphides in aggregates used in concrete. Materiaux Et Constructions, 1993, 26, 24-29.	0.3	2
378	African dust influence on ambient PM levels in South-Western Europe (Spain and Portugal): A quantitative approach to support implementation of Air Quality Directives. IOP Conference Series: Earth and Environmental Science, 2009, 7, 012018.	0.3	2

#	Article	IF	CITATIONS
379	BIOMASS BURNING CONTRIBUTIONS TO URBAN AEROSOLS IN A COASTAL MEDITERRANEAN CITY. ISEE Conference Abstracts, 2011, 2011, .	0.0	2
380	Workplace exposure to traffic-derived nanoscaled particulates. Journal of Physics: Conference Series, 2011, 304, 012006.	0.4	2
381	Psychoactive Substances in Airborne Particles in the Urban Environment. Handbook of Environmental Chemistry, 2012, , 435-460.	0.4	2
382	PM10 AND PM2.5 IN A STREET CANYON IN NE SPAIN. Journal of Aerosol Science, 2001, 32, 675-676.	3.8	2
383	A note on particulate matter, total mortality and Saharan dust in Madrid. Science of the Total Environment, 2012, 441, 290.	8.0	1
384	Corrigendum to "Variability of levels and composition of PM ₁₀ and PM _{2.5} in the Barcelona metro system" published in Atmos. Chem. Phys., 12, 5055–5076, 2012. Atmospheric Chemistry and Physics, 2013, 13, 10767-10768.	4.9	1
385	Atmospheric Particle Size Distributions in the Spanish Network of Environmental DMAs (REDMAAS). IOP Conference Series: Earth and Environmental Science, 2015, 28, 012001.	0.3	1
386	Public Transport Strikes and Their Relationships With Air Pollution, Mortality, and Hospital Admissions. American Journal of Epidemiology, 2020, 189, 116-119.	3.4	1
387	CHARACTERISATION OF AMBIENT AIR PM DURING AFRICAN OUTBREAKS OVER NORTHEASTERN IBERIAN PENINSULA AND THE CANARY ISLANDS. Journal of Aerosol Science, 2004, 35, S1055-S1056.	3.8	0
388	MEASUREMENT OF PARTICULATE MATTER EMITTED DURING BULK HANDLING ACTIVITIES IN A HARBOUR AREA IN SPAIN. Journal of Aerosol Science, 2004, 35, S1001-S1002.	3.8	0
389	SOURCE APPORTIONMENT OF PM10 IN A RURAL SITE IN NORTHEAST SPAIN. Journal of Aerosol Science, 2001, 32, 789-790.	3.8	0
390	Geographic and Anthropogenic Controls on Highly Variable Urban Air Pollution Across Spain. Epidemiology, 2006, 17, S157.	2.7	0
391	Geochemistry of Rare Earth Elements in PM10 of atmospheric particulates in Wuhan, central China. , 2007, , .		O
392	Black Carbon Exposure of Schoolchildren in Barcelona. Springer Proceedings in Complexity, 2016, , 173-175.	0.3	0
393	Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities., 2016,, 177-218.		O