
Elisabeth Varga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-acetyl cysteine alters the genotoxic and estrogenic properties of Alternaria toxins in naturally occurring mixtures. Emerging Contaminants, 2022, 8, 30-38.	4.9	7
2	The coupling between irradiance, growth, photosynthesis and prymnesin cell quota and production in two strains of the bloom-forming haptophyte, Prymnesium parvum. Harmful Algae, 2022, 112, 102173.	4.8	11
3	PeakBot: machine-learning-based chromatographic peak picking. Bioinformatics, 2022, 38, 3422-3428.	4.1	10
4	An Interlaboratory Comparison Study of Regulated and Emerging Mycotoxins Using Liquid Chromatography Mass Spectrometry: Challenges and Future Directions of Routine Multi-Mycotoxin Analysis including Emerging Mycotoxins. Toxins, 2022, 14, 405.	3.4	3
5	The acyltransferase PMAT1 malonylates brassinolide glucoside. Journal of Biological Chemistry, 2021, 296, 100424.	3.4	4
6	Assessing Mixture Effects of Cereulide and Deoxynivalenol on Intestinal Barrier Integrity and Uptake in Differentiated Human Caco-2 Cells. Toxins, 2021, 13, 189.	3.4	7
7	In vitro interactions of Alternaria mycotoxins, an emerging class of food contaminants, with the gut microbiota: a bidirectional relationship. Archives of Toxicology, 2021, 95, 2533-2549.	4.2	12
8	Polyketide synthase genes and molecular trade-offs in the ichthyotoxic species Prymnesium parvum. Science of the Total Environment, 2021, 795, 148878.	8.0	10
9	Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins, 2021, 13, 836.	3.4	14
10	Karmitoxin production by Karlodinium armiger and the effects of K. armiger and karmitoxin towards fish. Harmful Algae, 2020, 99, 101905.	4.8	5
11	Gut microbiota and undigested food constituents modify toxin composition and suppress the genotoxicity of a naturally occurring mixture of Alternaria toxins in vitro. Archives of Toxicology, 2020, 94, 3541-3552.	4.2	13
12	Microfiltration results in the loss of analytes and affects the in vitro genotoxicity of a complex mixture of Alternaria toxins. Mycotoxin Research, 2020, 36, 399-408.	2.3	8
13	The BAHD Acyltransferase BIA1 Uses Acetyl-CoA for Catabolic Inactivation of Brassinosteroids. Plant Physiology, 2020, 184, 23-26.	4.8	5
14	Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells. Archives of Toxicology, 2020, 94, 833-844.	4.2	17
15	Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins, 2019, 11, 640.	3.4	51
16	Zearalenone and ß-Zearalenol But Not Their Glucosides Inhibit Heat Shock Protein 90 ATPase Activity. Frontiers in Pharmacology, 2019, 10, 1160.	3.5	5
17	A-, B- and C-type prymnesins are clade specific compounds and chemotaxonomic markers in Prymnesium parvum. Harmful Algae, 2019, 81, 10-17.	4.8	39
18	Development of an Indirect Quantitation Method to Assess Ichthyotoxic B-Type Prymnesins from Prymnesium parvum. Toxins, 2019, 11, 251.	3.4	8

Elisabeth Varga

#	Article	lF	CITATIONS
19	Cross-reactivity of commercial and non-commercial deoxynivalenol-antibodies to emerging trichothecenes and common deoxynivalenol-derivatives. World Mycotoxin Journal, 2019, 12, 45-53.	1.4	10
20	Less-toxic rearrangement products of NX-toxins are formed during storage and food processing. Toxicology Letters, 2018, 284, 205-212.	0.8	18
21	UDP-Glucosyltransferases from Rice, Brachypodium, and Barley: Substrate Specificities and Synthesis of Type A and B Trichothecene-3-O-β-d-glucosides. Toxins, 2018, 10, 111.	3.4	35
22	Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins, 2017, 9, 56.	3.4	121
23	Synthesis of Mono- and Di-Glucosides of Zearalenone and α-/β-Zearalenol by Recombinant Barley Glucosyltransferase HvUGT14077. Toxins, 2017, 9, 58.	3.4	24
24	Identification and Characterization of Carboxylesterases from Brachypodium distachyon Deacetylating Trichothecene Mycotoxins. Toxins, 2016, 8, 6.	3.4	17
25	Pentahydroxyscirpene—Producing Strains, Formation In Planta, and Natural Occurrence. Toxins, 2016, 8, 295.	3.4	1
26	Comparative inÂvitro cytotoxicity of modified deoxynivalenol on porcine intestinal epithelial cells. Food and Chemical Toxicology, 2016, 95, 103-109.	3.6	55
27	New tricks of an old enemy: isolates of <scp><i>F</i></scp> <i>usarium graminearum</i> produce a type <scp>A</scp> trichothecene mycotoxin. Environmental Microbiology, 2015, 17, 2588-2600.	3.8	145
28	Occurrence of Fusarium head blight and mycotoxins as well as morphological identification of <i>Fusarium</i> species in winter wheat in Kosovo. Cereal Research Communications, 2015, 43, 438-448.	1.6	3
29	Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. Toxins, 2015, 7, 2685-2700.	3.4	40
30	A Versatile Family 3 Glycoside Hydrolase from Bifidobacterium adolescentis Hydrolyzes β-Glucosides of the Fusarium Mycotoxins Deoxynivalenol, Nivalenol, and HT-2 Toxin in Cereal Matrices. Applied and Environmental Microbiology, 2015, 81, 4885-4893.	3.1	26
31	Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Analytical and Bioanalytical Chemistry, 2015, 407, 4745-4755.	3.7	133
32	Hydrolysed fumonisin B1andN-(deoxy-D-fructos-1-yl)-fumonisin B1: stability and catabolic fate under simulated human gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 2015, 66, 98-103.	2.8	17
33	Critical evaluation of indirect methods for the determination of deoxynivalenol and its conjugated forms in cereals. Analytical and Bioanalytical Chemistry, 2015, 407, 6009-6020.	3.7	20
34	Metabolism of the Fusarium Mycotoxins T-2 Toxin and HT-2 Toxin in Wheat. Journal of Agricultural and Food Chemistry, 2015, 63, 7862-7872.	5.2	78
35	Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 8019-8033.	3.7	56
36	Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food and Chemical Toxicology, 2015, 76, 11-18.	3.6	66

Elisabeth Varga

#	Article	IF	CITATIONS
37	Methylthiodeoxynivalenol (MTD): insight into the chemistry, structure and toxicity of thia-Michael adducts of trichothecenes. Organic and Biomolecular Chemistry, 2014, 12, 5144.	2.8	20
38	Isolation and Structure Elucidation of Pentahydroxyscirpene, a Trichothecene Fusarium Mycotoxin. Journal of Natural Products, 2014, 77, 188-192.	3.0	10
39	Zearalenone-16- <i>O</i> -glucoside: A New Masked Mycotoxin. Journal of Agricultural and Food Chemistry, 2014, 62, 1181-1189.	5.2	81
40	The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer. PLoS ONE, 2014, 9, e110311.	2.5	124
41	Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 137-146.	2.3	91
42	Simultaneous preparation of α/β-zearalenol glucosides and glucuronides. Carbohydrate Research, 2013, 373, 59-63.	2.3	22
43	Investigations on <i>Fusarium</i> spp. and their mycotoxins causing Fusarium ear rot of maize in Kosovo. Food Additives and Contaminants: Part B Surveillance, 2013, 6, 237-243.	2.8	14
44	Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Analytical and Bioanalytical Chemistry, 2013, 405, 5087-5104.	3.7	137
45	Gentiobiosylation of β-Resorcylic Acid Esters and Lactones: First Synthesis and Characterization of Zearalenone-14-β,d-Gentiobioside. Synlett, 2013, 24, 1830-1834.	1.8	5
46	Development, validation and application of an LC-MS/MS based method for the determination of deoxynivalenol and its conjugates in different types of beer. World Mycotoxin Journal, 2012, 5, 261-270.	1.4	24
47	Stable isotope dilution assay for the accurate determination of mycotoxins in maize by UHPLC-MS/MS. Analytical and Bioanalytical Chemistry, 2012, 402, 2675-2686.	3.7	112
48	Sampling of cereals and cereal-based foods for the determination of ochratoxin A: an overview. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2011, 28, 775-785.	2.3	31
49	Production of fumonisins B2 and B4 in Tolypocladium species. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1329-1335.	3.0	50
50	Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Frontiers in Nutrition, 0, 9, .	3.7	9