Yu-Cai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500630/publications.pdf Version: 2024-02-01

	25423	33145
11,520	59	104
citations	h-index	g-index
132	132	17691
docs citations	times ranked	citing authors
	11,520 citations 132 docs citations	11,520 59 citations h-index 132 132 docs citations 132 times ranked

YU-CALWANC

#	Article	IF	CITATIONS
1	Nitric Oxide Induces Immunogenic Cell Death and Potentiates Cancer Immunotherapy. ACS Nano, 2022, 16, 3881-3894.	7.3	66
2	Hydrogenated Oxide Material for Selfâ€Targeting and Automaticâ€Degrading Photothermal Tumor Therapy in the NIRâ€II Bioâ€Window. Advanced Functional Materials, 2022, 32, .	7.8	16
3	Metallic Carbonitride MXene Based Photonic Hyperthermia for Tumor Therapy. Small, 2022, 18, e2200646.	5.2	16
4	Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis. Nature Biomedical Engineering, 2022, 6, 867-881.	11.6	28
5	Re-detectable positive SARS-CoV-2 RNA tests in patients who recovered from COVID-19 with intestinal infection. Protein and Cell, 2021, 12, 230-235.	4.8	36
6	Voluntaryâ€Opsonizationâ€Enabled Precision Nanomedicines for Inflammation Treatment. Advanced Materials, 2021, 33, 2006160.	11.1	22
7	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nature Nanotechnology, 2021, 16, 708-716.	15.6	153
8	High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Research, 2021, 14, 3913-3920.	5.8	11
9	Reversing Immunosuppression in Hypoxic and Immune old Tumors with Ultrathin Oxygen Selfâ€Supplementing Polymer Nanosheets under Near Infrared Light Irradiation. Advanced Functional Materials, 2021, 31, 2100354.	7.8	25
10	Neutrophil Decoys with Antiâ€Inflammatory and Antiâ€Oxidative Properties Reduce Secondary Spinal Cord Injury and Improve Neurological Functional Recovery. Advanced Functional Materials, 2021, 31, 2102912.	7.8	38
11	Phototherapy Facilitates Tumor Recruitment and Activation of Natural Killer T cells for Potent Cancer Immunotherapy. Nano Letters, 2021, 21, 6304-6313.	4.5	25
12	Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. ACS Nano, 2021, 15, 18048-18059.	7.3	94
13	Nano-metal–organic-frameworks for treating H2O2-Secreting bacteria alleviate pulmonary injury and prevent systemic sepsis. Biomaterials, 2021, 279, 121237.	5.7	13
14	Microenvironment-activated nanoparticles for oxygen self-supplemented photodynamic cancer therapy. Biomaterials Science, 2020, 8, 370-378.	2.6	17
15	Pseudoneutrophil Cytokine Sponges Disrupt Myeloid Expansion and Tumor Trafficking to Improve Cancer Immunotherapy. Nano Letters, 2020, 20, 242-251.	4.5	53
16	Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Medicine in Microecology, 2020, 5, 100023.	0.7	112
17	Pre- and post-irradiation mild hyperthermia enabled by NIR-II for sensitizing radiotherapy. Biomaterials, 2020, 257, 120235.	5.7	31
18	Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity. Nano Today, 2020, 35, 101007.	6.2	36

#	Article	IF	CITATIONS
19	Furinâ€Instructed Intracellular Gold Nanoparticle Aggregation for Tumor Photothermal Therapy. Advanced Functional Materials, 2020, 30, 2001566.	7.8	71
20	Quantifiable Polymeric Fluorescent Ratiometric γ-ray Chemosensor. ACS Applied Materials & Interfaces, 2020, 12, 42210-42216.	4.0	13
21	Direct carbonization of organic solvents toward graphene quantum dots. Nanoscale, 2020, 12, 10956-10963.	2.8	24
22	Self-Reporting and Splitting Nanopomegranates Potentiate Deep Tissue Cancer Radiotherapy <i>via</i> Elevated Diffusion and Transcytosis. ACS Nano, 2020, 14, 8459-8472.	7.3	35
23	Polyphosphoestered Nanomedicines with Tunable Surface Hydrophilicity for Cancer Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 32312-32320.	4.0	10
24	Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nature Communications, 2020, 11, 1126.	5.8	167
25	Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS Nano, 2020, 14, 3563-3575.	7.3	52
26	Bioinspired Membrane-Disruptive Macromolecules as Drug-Free Therapeutics. ACS Applied Bio Materials, 2020, 3, 1267-1275.	2.3	13
27	Bacterial outer membrane vesicles as a platform for biomedical applications: An update. Journal of Controlled Release, 2020, 323, 253-268.	4.8	160
28	Are pyridinium ylides radicals?. Chemical Communications, 2020, 56, 11287-11290.	2.2	8
29	Aggregationâ€Induced Emission with Longâ€Lived Roomâ€Temperature Phosphorescence from Methyleneâ€Linked Organic Donor–Acceptor Structures. Chemistry - an Asian Journal, 2019, 14, 751-754.	1.7	37
30	Enzyme-Activatable Interferon–Poly(α-amino acid) Conjugates for Tumor Microenvironment Potentiation. Biomacromolecules, 2019, 20, 3000-3008.	2.6	23
31	Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity. ACS Nano, 2019, 13, 8890-8902.	7.3	111
32	Targeted Singleâ€Cell Therapeutics with Magnetic Tubular Micromotor by Oneâ€Step Exposure of Structured Femtosecond Optical Vortices. Advanced Functional Materials, 2019, 29, 1905745.	7.8	54
33	A dual functional ruthenium arene complex induces differentiation and apoptosis of acute promyelocytic leukemia cells. Chemical Science, 2019, 10, 9721-9728.	3.7	10
34	Near-Infrared II Phototherapy Induces Deep Tissue Immunogenic Cell Death and Potentiates Cancer Immunotherapy. ACS Nano, 2019, 13, 11967-11980.	7.3	251
35	Boosting the triplet activity of heavy-atom-free difluoroboron dibenzoylmethane <i>via</i> sp ³ oxygen-bridged electron donors. Chemical Communications, 2019, 55, 67-70.	2.2	27
36	Alp7-Mto1 and Alp14 synergize to promote interphase microtubule regrowth from the nuclear envelope. Journal of Molecular Cell Biology, 2019, 11, 944-955.	1.5	6

#	Article	IF	CITATIONS
37	Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets. Nano Letters, 2019, 19, 4060-4067.	4.5	118
38	Controlled Syntheses of Well-Defined Poly(thionophosphoester)s That Undergo Peroxide-Triggered Degradation. Macromolecules, 2019, 52, 4306-4316.	2.2	5
39	ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Biomaterials Science, 2019, 7, 3706-3716.	2.6	53
40	Facile syntheses of conjugated polymers for photothermal tumour therapy. Nature Communications, 2019, 10, 1192.	5.8	149
41	Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy. Nano Letters, 2019, 19, 2774-2783.	4.5	155
42	Au nanoparticles with enzyme-mimicking activity-ornamented ZIF-8 for highly efficient photodynamic therapy. Biomaterials Science, 2019, 7, 2740-2748.	2.6	72
43	Modular design of nanobody–drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chemical Communications, 2019, 55, 5175-5178.	2.2	30
44	Ultralong circulating choline phosphate liposomal nanomedicines for cascaded chemo-radiotherapy. Biomaterials Science, 2019, 7, 1335-1344.	2.6	12
45	Enzyme Degradable Hyperbranched Polyphosphoester Micellar Nanomedicines for NIR Imaging-Guided Chemo-Photothermal Therapy of Drug-Resistant Cancers. Biomacromolecules, 2018, 19, 1130-1141.	2.6	28
46	Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials, 2018, 162, 123-131.	5.7	196
47	Adaptive immune cells are necessary for the enhanced therapeutic effect of sorafenib-loaded nanoparticles. Biomaterials Science, 2018, 6, 893-900.	2.6	19
48	The effect of surface charge on oral absorption of polymeric nanoparticles. Biomaterials Science, 2018, 6, 642-650.	2.6	96
49	PEG conjugated BODIPY-Br ₂ as macro-photosensitizer for efficient imaging-guided photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 753-762.	2.9	40
50	Ultrathin Polypyrrole Nanosheets via Space-Confined Synthesis for Efficient Photothermal Therapy in the Second Near-Infrared Window. Nano Letters, 2018, 18, 2217-2225.	4.5	215
51	Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Research, 2018, 11, 5716-5734.	5.8	27
52	Cancer Chemoradiotherapy Duo: Nano-Enabled Targeting of DNA Lesion Formation and DNA Damage Response. ACS Applied Materials & Interfaces, 2018, 10, 35734-35744.	4.0	30
53	High Efficiency Organic Lewis Pair Catalyst for Ring-Opening Polymerization of Epoxides with Chemoselectivity. Macromolecules, 2018, 51, 8286-8297.	2.2	105
54	Hierarchical Multiplexing Nanodroplets for Imaging-Guided Cancer Radiotherapy via DNA Damage Enhancement and Concomitant DNA Repair Prevention. ACS Nano, 2018, 12, 5684-5698.	7.3	83

#	Article	IF	CITATIONS
55	Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Research, 2018, 11, 6270-6282.	5.8	29
56	Redox-sensitive dendrimersomes assembled from amphiphilic Janus dendrimers for siRNA delivery. Biomaterials Science, 2018, 6, 2122-2129.	2.6	19
57	Sustained delivery of siRNA/mesoporous silica nanoparticle complexes from nanofiber scaffolds for long-term gene silencing. Acta Biomaterialia, 2018, 76, 164-177.	4.1	84
58	Dipole Orientation Matters: Longer-Circulating Choline Phosphate than Phosphocholine Liposomes for Enhanced Tumor Targeting. ACS Applied Materials & Interfaces, 2017, 9, 17736-17744.	4.0	32
59	Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Letters, 2017, 17, 3822-3829.	4.5	158
60	Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albumin-bound paclitaxel nanoparticles. Chemical Communications, 2017, 53, 212-215.	2.2	26
61	A micellar cisplatin prodrug simultaneously eliminates both cancer cells and cancer stem cells in lung cancer. Biomaterials Science, 2017, 5, 1612-1621.	2.6	24
62	Sequentially Responsive Shell‣tacked Nanoparticles for Deep Penetration into Solid Tumors. Advanced Materials, 2017, 29, 1701170.	11.1	360
63	The influence of tumor-induced immune dysfunction on the immune cell distribution of gold nanoparticles in vivo. Biomaterials Science, 2017, 5, 1531-1536.	2.6	12
64	NIR imaging-guided combined photodynamic therapy and chemotherapy by a pH-responsive amphiphilic polypeptide prodrug. Biomaterials Science, 2017, 5, 313-321.	2.6	48
65	A Reloadable Selfâ€Healing Hydrogel Enabling Diffusive Transport of Câ€Dots Across Gel–Gel Interface for Scavenging Reactive Oxygen Species. Advanced Healthcare Materials, 2017, 6, 1700746.	3.9	35
66	Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(ethylene oxide). Biomacromolecules, 2017, 18, 3233-3237.	2.6	44
67	3D calcite heterostructures for dynamic and deformable mineralized matrices. Nature Communications, 2017, 8, 509.	5.8	7
68	Understanding the Capsanthin Tails in Regulating the Hydrophilic–Lipophilic Balance of Carbon Dots for a Rapid Crossing Cell Membrane. Langmuir, 2017, 33, 10259-10270.	1.6	27
69	Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 2017, 3, 98-108.	1.5	37
70	Investigating the Effect of Chemical Structure of Semiconducting Polymer Nanoparticle on Photothermal Therapy and Photoacoustic Imaging. Theranostics, 2017, 7, 4029-4040.	4.6	44
71	Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Science Advances, 2016, 2, e1601039.	4.7	84
72	Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials, 2016, 94, 9-19.	5.7	47

#	Article	IF	CITATIONS
73	Extracellular biosynthesis of copper sulfide nanoparticles by Shewanella oneidensis MR-1 as a photothermal agent. Enzyme and Microbial Technology, 2016, 95, 230-235.	1.6	51
74	Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11, 133-144.	6.2	208
75	NIRâ€Activated Supersensitive Drug Release Using Nanoparticles with a Flow Core. Advanced Functional Materials, 2016, 26, 7516-7525.	7.8	72
76	Fluorescent metallacycle-cored polymers via covalent linkage and their use as contrast agents for cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11100-11105.	3.3	112
77	A Donor–Acceptor Conjugated Polymer with Alternating Isoindigo Derivative and Bithiophene Units for Near-Infrared Modulated Cancer Thermo-Chemotherapy. ACS Applied Materials & Interfaces, 2016, 8, 19312-19320.	4.0	54
78	Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Materials, 2016, 15, 1023-1030.	13.3	132
79	Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-Î ² signaling pathway inhibition. Biomaterials, 2016, 82, 48-59.	5.7	99
80	Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 26315-26325.	4.0	48
81	Atomic gold–enabled three-dimensional lithography for silicon mesostructures. Science, 2015, 348, 1451-1455.	6.0	82
82	Free-Standing Kinked Silicon Nanowires for Probing Inter- and Intracellular Force Dynamics. Nano Letters, 2015, 15, 5492-5498.	4.5	43
83	Multiresponsive Polymer Assemblies Achieved by a Subtle Chain Terminal Modification. Chinese Journal of Chemistry, 2014, 32, 51-56.	2.6	2
84	Stimuliâ€Responsive Materials for Controlled Release of Theranostic Agents. Advanced Functional Materials, 2014, 24, 4206-4220.	7.8	294
85	Using SV119 old Nanocage Conjugates to Eradicate Cancer Stem Cells Through a Combination of Photothermal and Chemo Therapies. Advanced Healthcare Materials, 2014, 3, 1283-1291.	3.9	69
86	Radioactive ¹⁹⁸ Au-Doped Nanostructures with Different Shapes for <i>In Vivo</i> Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution. ACS Nano, 2014, 8, 4385-4394.	7.3	312
87	Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35, 836-845.	5.7	150
88	Enhanced drug delivery to hepatocellular carcinoma with a galactosylated core–shell polyphosphoester nanogel. Biomaterials Science, 2013, 1, 1143.	2.6	14
89	Radioluminescent Gold Nanocages with Controlled Radioactivity for Real-Time in Vivo Imaging. Nano Letters, 2013, 13, 581-585.	4.5	128
90	N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver. Journal of Controlled Release, 2013, 166, 106-114.	4.8	79

#	Article	IF	CITATIONS
91	A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano, 2013, 7, 438-446.	7.3	246
92	Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment. ACS Nano, 2013, 7, 2068-2077.	7.3	557
93	Robust Synthesis of Gold Cubic Nanoframes through a Combination of Galvanic Replacement, Gold Deposition, and Silver Dealloying. Small, 2013, 9, 3111-3117.	5.2	74
94	Achieving a New Controllable Male Contraception by the Photothermal Effect of Gold Nanorods. Nano Letters, 2013, 13, 2477-2484.	4.5	31
95	Cold Nanoparticles Elevate Plasma Testosterone Levels in Male Mice without Affecting Fertility. Small, 2013, 9, 1708-1714.	5.2	52
96	Labeling Human Mesenchymal Stem Cells with Gold Nanocages for <i>in vitro</i> and <i>in vivo</i> Tracking by Two-Photon Microscopy and Photoacoustic Microscopy. Theranostics, 2013, 3, 532-543.	4.6	92
97	SV119-gold nanocage conjugates: a new platform for targeting cancer cellsvia sigma-2 receptors. Nanoscale, 2012, 4, 421-424.	2.8	45
98	Single-Step Assembly of Cationic Lipid–Polymer Hybrid Nanoparticles for Systemic Delivery of siRNA. ACS Nano, 2012, 6, 4955-4965.	7.3	134
99	Synthesis and Characterization of Pd@M _{<i>x</i>} Cu _{1â[^]<i>x</i>} (M=Au, Pd, and) Tj ET Reactions. Chemistry - A European Journal, 2012, 18, 14974-14980.	Qq1 1 0.7 1.7	84314 rgB ⁻ 62
100	Evaluating the Pharmacokinetics and <i>In Vivo</i> Cancer Targeting Capability of Au Nanocages by Positron Emission Tomography Imaging. ACS Nano, 2012, 6, 5880-5888.	7.3	155
101	Quantifying the Coverage Density of Poly(ethylene glycol) Chains on the Surface of Gold Nanostructures. ACS Nano, 2012, 6, 512-522.	7.3	209
102	Proteinâ€Protected Au Clusters as a New Class of Nanoscale Biosensor for Labelâ€Free Fluorescence Detection of Proteases. Small, 2012, 8, 3769-3773.	5.2	107
103	Lipase-Sensitive Polymeric Triple-Layered Nanogel for "On-Demand―Drug Delivery. Journal of the American Chemical Society, 2012, 134, 4355-4362.	6.6	308
104	Swarming towards the target. Nature Materials, 2011, 10, 482-483.	13.3	46
105	Redox-Responsive Nanoparticles from the Single Disulfide Bond-Bridged Block Copolymer as Drug Carriers for Overcoming Multidrug Resistance in Cancer Cells. Bioconjugate Chemistry, 2011, 22, 1939-1945.	1.8	251
106	Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells. ACS Nano, 2011, 5, 3679-3692.	7.3	722
107	Syntheses and characterization of block copolymers of poly(aliphatic ester) with clickable polyphosphoester. Journal of Polymer Science Part A, 2011, 49, 487-494.	2.5	27
108	Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials, 2011, 32, 5915-5923.	5.7	127

#	Article	IF	CITATIONS
109	Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery: In Vitro and In Vivo Valuation. Pharmaceutical Research, 2010, 27, 2657-2669.	1.7	50
110	Core–Shell–Corona Micelle Stabilized by Reversible Cross‣inkage for Intracellular Drug Delivery. Macromolecular Rapid Communications, 2010, 31, 1201-1206.	2.0	117
111	Engineering nanoscopic hydrogels via photo-crosslinking salt-induced polymer assembly for targeted drug delivery. Chemical Communications, 2010, 46, 3520.	2.2	35
112	One-Pot Syntheses of Amphiphilic Centipede-like Brush Copolymers via Combination of Ring-Opening Polymerization and "Click―Chemistry. Macromolecules, 2010, 43, 1739-1746.	2.2	66
113	Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromolecular Bioscience, 2009, 9, 1154-1164.	2.1	192
114	Synthesis and thermoresponsive behaviors of biodegradable Pluronic analogs. Journal of Polymer Science Part A, 2009, 47, 6168-6179.	2.5	18
115	Biodegradable vesicular nanocarriers based on poly(É›-caprolactone)-block-poly(ethyl ethylene) Tj ETQq1 1 0.784	314 rgBT / 1.8	Oyerlock I.O
116	Gold Nanoparticles Stabilized by Thermosensitive Diblock Copolymers of Poly(ethylene glycol) and Polyphosphoester. Langmuir, 2009, 25, 10298-10304.	1.6	29
117	Block Copolymer of Polyphosphoester and Poly(<scp>l</scp> -Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules, 2009, 10, 2213-2220.	2.6	54
118	Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization. Macromolecules, 2009, 42, 893-896.	2.2	61
119	Shell-Detachable Micelles Based on Disulfide-Linked Block Copolymer As Potential Carrier for Intracellular Drug Delivery. Bioconjugate Chemistry, 2009, 20, 1095-1099.	1.8	243
120	Thermoresponsive Block Copolymers of Poly(ethylene glycol) and Polyphosphoester: Thermo-Induced Self-Assembly, Biocompatibility, and Hydrolytic Degradation. Biomacromolecules, 2009, 10, 66-73.	2.6	136
121	Tunable Thermosensitivity of Biodegradable Polymer Micelles of Poly(ε-caprolactone) and Polyphosphoester Block Copolymers. Macromolecules, 2009, 42, 3026-3032.	2.2	100
122	Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. Journal of Materials Chemistry, 2009, 19, 7856.	6.7	23
123	Synthesis and characterization of amphiphilic block copolymer of polyphosphoester and poly(<scp>L</scp> â€lactic acid). Journal of Polymer Science Part A, 2008, 46, 6425-6434.	2.5	59
124	Synthesis and characterization of star-shaped block copolymer of poly-(É>-caprolactone) and poly(ethyl) Tj ETQqC	0.0 rgBT 1.8	/Qyerlock 10
125	Functionalized micelles from block copolymer of polyphosphoester and poly(É>-caprolactone) for receptor-mediated drug delivery. Journal of Controlled Release, 2008, 128, 32-40.	4.8	142

Self-Assembled Micelles of Biodegradable Triblock Copolymers Based on Poly(ethyl ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 To 2.6

Yu-Cai Wang

#	Article	IF	CITATIONS
127	Synthesis of Amphiphilic ABC 3-Miktoarm Star Terpolymer by Combination of Ring-Opening Polymerization and "Click―Chemistry. Macromolecules, 2008, 41, 8620-8625.	2.2	77
128	Kinetics and Mechanism of 2-Ethoxy-2-oxo-1,3,2-dioxaphospholane Polymerization Initiated by Stannous Octoate. Macromolecules, 2006, 39, 6825-6831.	2.2	96
129	Block Copolymerization of ε-Caprolactone and 2-Methoxyethyl Ethylene Phosphate Initiated by Aluminum Isopropoxide:  Synthesis, Characterization, and Kinetics. Macromolecules, 2006, 39, 8992-8998.	2.2	50
130	Synthesis and Micellization of Amphiphilic Brushâ^'Coil Block Copolymer Based on Poly(ε-caprolactone) and PEGylated Polyphosphoester. Biomacromolecules, 2006, 7, 1898-1903.	2.6	80