Helen S Melito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5006147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compositional characterization and rheological properties of an anionic gum from Alyssum homolocarpum seeds. Food Hydrocolloids, 2016, 52, 766-773.	10.7	124
2	Effect of formulation on structure-function relationships of concentrated emulsions: Rheological, tribological, and microstructural characterization. Food Hydrocolloids, 2017, 72, 11-26.	10.7	97
3	Effect of fish gelatin and gum arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties. Food Hydrocolloids, 2018, 79, 518-525.	10.7	78
4	Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk. Journal of Dairy Science, 2018, 101, 2941-2955.	3.4	56
5	Mechanisms of whey protein isolate interaction with basil seed gum: Influence of pH and protein-polysaccharide ratio. Carbohydrate Polymers, 2020, 232, 115775.	10.2	50
6	Rheological behavior and antioxidant activity of a highly acidic gum from Althaea officinalis flower. Food Hydrocolloids, 2017, 69, 432-439.	10.7	49
7	Effect of fish gelatin-gum arabic interactions on structural and functional properties of concentrated emulsions. Food Research International, 2017, 102, 1-7.	6.2	48
8	Impact of Formulation and Saliva on Acid Milk Gel Friction Behavior. Journal of Food Science, 2014, 79, E867-80.	3.1	39
9	Rheological study of different mashed potato preparations using large amplitude oscillatory shear and confocal microscopy. Journal of Food Engineering, 2016, 169, 326-337.	5.2	33
10	Nonlinear (Large-Amplitude Oscillatory Shear) Rheological Properties and Their Impact on Food Processing and Quality. Annual Review of Food Science and Technology, 2021, 12, 591-609.	9.9	32
11	Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Journal of Microencapsulation, 2017, 34, 218-230.	2.8	30
12	Large amplitude oscillatory shear behavior and tribological properties of gum extracted from Alyssum homolocarpum seed. Food Hydrocolloids, 2018, 77, 669-676.	10.7	29
13	Concentrated emulsions as novel fat replacers in reduced-fat and low-fat Cheddar cheeses. Part 2. Large amplitude oscillatory shear behavior. International Dairy Journal, 2019, 91, 137-146.	3.0	26
14	Impact of Oil-in-Water Emulsion Composition and Preparation Method on Emulsion Physical Properties and Friction Behaviors. Tribology Letters, 2014, 56, 143-160.	2.6	25
15	Beyond surface selection: The impact of different methodologies on tribological measurements. Journal of Food Engineering, 2014, 134, 45-58.	5.2	24
16	Impact of pasteurization method and fat on milk: Relationships among rheological, tribological, and astringency behaviors. International Dairy Journal, 2018, 78, 28-35.	3.0	22
17	Microwave Pasteurization of Cooked Pasta: Effect of Process Parameters on Texture and Quality for Heatâ€andâ€Eat and Readyâ€toâ€Eat Meals. Journal of Food Science, 2016, 81, E1447-56. 	3.1	17
18	Adapting tribology for use in sensory studies on hard food: The case of texture perception in apples. Food Quality and Preference, 2020, 86, 103990.	4.6	16

HELEN S MELITO

#	Article	IF	CITATIONS
19	Characterizing wear behaviors of κ-carrageenan and whey protein gels by numerical modeling. Journal of Food Engineering, 2018, 235, 98-105.	5.2	15
20	Curriculum Mapping: A Method to Assess and Refine Undergraduate Degree Programs. Journal of Food Science Education, 2016, 15, 83-100.	1.0	14
21	Concentrated emulsions as novel fat replacers in reduced-fat and low-fat Cheddar cheeses. Part 1. Rheological and microstructural characterization. International Dairy Journal, 2018, 86, 76-85.	3.0	14
22	The effect of storage temperature on blue cheese mechanical properties. Journal of Texture Studies, 2018, 49, 309-319.	2.5	13
23	Impact of parameter settings on normal force and gap height during tribological measurements. Journal of Food Engineering, 2014, 137, 51-63.	5.2	10
24	Waxy Wheat Flour as a Freeze-Thaw Stable Ingredient Through Rheological Studies. Food and Bioprocess Technology, 2017, 10, 1281-1296.	4.7	10
25	Wear: A new dimension of food rheological behaviors as demonstrated on two cheese types. Journal of Food Engineering, 2019, 263, 337-340.	5.2	10
26	Development of starch texture rheological maps through empirical modeling of starch swelling behavior. Food Hydrocolloids, 2021, 120, 106920.	10.7	10
27	Impact of formulation on highâ€protein bar rheological and wear behaviors. Journal of Texture Studies, 2019, 50, 445-455.	2.5	9
28	The impact of salt reduction on cottage cheese cream dressing rheological behavior and consumer acceptance. International Dairy Journal, 2018, 79, 62-72.	3.0	8
29	Kinetics of Starch Retrogradation in Rice (Oryza sativa) Subjected to State/Phase Transitions. Food and Bioprocess Technology, 2020, 13, 1491-1504.	4.7	8
30	Relationships among rheological, sensory, and wear behaviors of cheeses. Journal of Texture Studies, 2020, 51, 702-721.	2.5	8
31	Interlaboratory Measurement of Rheological Properties of Tomato Salad Dressing. Journal of Food Science, 2019, 84, 3204-3212.	3.1	7
32	Influence of various hydrocolloids on cottage cheese cream dressing stability. International Dairy Journal, 2015, 51, 24-33.	3.0	6
33	Impact of Infrared Finishing on the Mechanical and Sensorial Properties of Wheat Donuts. Journal of Food Science, 2012, 77, E224-30.	3.1	5
34	Using Delphi Surveying Techniques to Gather Input from Nonâ€Academics for Development of a Modern Dairy Manufacturing Curriculum. Journal of Food Science Education, 2015, 14, 88-115.	1.0	5
35	Curriculum Mapping: A Beforeâ€andâ€After Look at Faculty Perceptions of Their Courses and the Mapping Process. Journal of Food Science Education, 2016, 15, 63-69.	1.0	5
36	Understanding How Highâ€Protein Bar Formulations Impact Their Mechanical and Wear Behaviors Using Response Surface Analysis. Journal of Food Science, 2019, 84, 2209-2221.	3.1	5

HELEN S MELITO

#	Article	IF	CITATIONS
37	Identification of factors affecting wear behavior of semi-hard cheeses. Journal of Food Engineering, 2021, 292, 110348.	5.2	4
38	Taking an Attentionâ€Grabbing "Headlines First!―Approach to Engage Students in a Lecture Setting. Journal of Food Science Education, 2015, 14, 136-141.	1.0	3
39	Rheological and sensory behaviors of parboiled pasta cooked using a microwave pasteurization process. Journal of Texture Studies, 2017, 48, 450-462.	2.5	3
40	If You Don't Know, Ask! Using Expert Knowledge to Determine What Content Is Needed in an Undergraduate Food Quality Management and Control Course. Journal of Food Science Education, 2017, 16, 19-27.	1.0	3
41	The impact of NaCl replacement with KCl and CaCl2 on cottage cheese cream dressing rheological behavior and consumer acceptance. International Dairy Journal, 2018, 78, 73-84.	3.0	3
42	Characterizing wear behaviors of edible hydrogels by kernel-based statistical modeling. Journal of Food Engineering, 2020, 275, 109850.	5.2	3
43	Semisolid Food Tribology. Food Engineering Series, 2019, , 133-165.	0.7	3
44	Dairy protein stabilizers affect both rheological properties and growth of <i>Zygosaccharomyces parabailii</i> in lite salad dressings. Journal of Food Processing and Preservation, 2019, 43, e14069.	2.0	1
45	Relationships Among Acid Milk Gel Sensory, Rheological, and Tribological Behaviors. Food Engineering Series, 2019, , 323-347.	0.7	1
46	The effect of organic acids and storage temperature on lite salad dressing rheology and Zygosaccharomyces parabailii growth. Journal of Food Science and Technology, 2022, 59, 4075-4084.	2.8	1
47	Predicting <scp>highâ€protein</scp> bar processing ability from rheological and tribological analyses. Journal of Food Process Engineering, 2020, 43, e13482.	2.9	Ο