
Peter S Nelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5005894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 2015, 161, 1215-1228.	28.9	2,660
2	Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genetics, 2012, 44, 685-689.	21.4	1,300
3	Maintenance of Intratumoral Androgens in Metastatic Prostate Cancer: A Mechanism for Castration-Resistant Tumor Growth. Cancer Research, 2008, 68, 4447-4454.	0.9	1,237
4	Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 443-453.	27.0	1,205
5	Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. Journal of Clinical Oncology, 2016, 34, 1402-1418.	1.6	1,089
6	Genomic correlates of clinical outcome in advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11428-11436.	7.1	839
7	Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Medicine, 2012, 18, 1359-1368.	30.7	682
8	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	21.4	601
9	Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nature Medicine, 2016, 22, 369-378.	30.7	572
10	Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 2017, 32, 474-489.e6.	16.8	483
11	Intraprostatic Androgens and Androgen-Regulated Gene Expression Persist after Testosterone Suppression: Therapeutic Implications for Castration-Resistant Prostate Cancer. Cancer Research, 2007, 67, 5033-5041.	0.9	474
12	The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11890-11895.	7.1	407
13	Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell, 2018, 173, 1770-1782.e14.	28.9	400
14	The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis. Cancer Discovery, 2014, 4, 1310-1325.	9.4	389
15	The Gene Expression Program of Prostate Fibroblast Senescence Modulates Neoplastic Epithelial Cell Proliferation through Paracrine Mechanisms. Cancer Research, 2006, 66, 794-802.	0.9	382
16	<i>TMPRSS2</i> and COVID-19: Serendipity or Opportunity for Intervention?. Cancer Discovery, 2020, 10, 779-782.	9.4	329
17	Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. Journal of Clinical Investigation, 2018, 129, 192-208.	8.2	266
18	A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proceedings of the United States of America, 2006, 103, 10991-10996.	7.1	261

#	Article	IF	CITATIONS
19	Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing. Cell, 2018, 174, 433-447.e19.	28.9	258
20	A Gain-of-Function Mutation in DHT Synthesis in Castration-Resistant Prostate Cancer. Cell, 2013, 154, 1074-1084.	28.9	257
21	Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. Journal of Clinical Investigation, 2019, 129, 4492-4505.	8.2	250
22	Biallelic Inactivation of BRCA2 in Platinum-sensitive Metastatic Castration-resistant Prostate Cancer. European Urology, 2016, 69, 992-995.	1.9	228
23	Intense Androgen-Deprivation Therapy With Abiraterone Acetate Plus Leuprolide Acetate in Patients With Localized High-Risk Prostate Cancer: Results of a Randomized Phase II Neoadjuvant Study. Journal of Clinical Oncology, 2014, 32, 3705-3715.	1.6	220
24	Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nature Communications, 2014, 5, 4988.	12.8	219
25	LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease anÂÂd Serve as Models for Evaluating Cancer Therapeutics. Prostate, 2017, 77, 654-671.	2.3	219
26	Genomic and phenotypic heterogeneity in prostate cancer. Nature Reviews Urology, 2021, 18, 79-92.	3.8	215
27	Development and Validation of a Scalable Next-Generation Sequencing System for Assessing Relevant Somatic Variants in Solid Tumors. Neoplasia, 2015, 17, 385-399.	5.3	212
28	Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nature Cell Biology, 2019, 21, 238-250.	10.3	208
29	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
30	Dual-substrate Specificity Short Chain Retinol Dehydrogenases from the Vertebrate Retina. Journal of Biological Chemistry, 2002, 277, 45537-45546.	3.4	179
31	Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nature Communications, 2021, 12, 1426.	12.8	176
32	Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress. Cell Reports, 2020, 31, 107669.	6.4	167
33	Rapid Induction of Androgen Receptor Splice Variants by Androgen Deprivation in Prostate Cancer. Clinical Cancer Research, 2014, 20, 1590-1600.	7.0	165
34	Tmprss2 Is Essential for Influenza H1N1 Virus Pathogenesis in Mice. PLoS Pathogens, 2013, 9, e1003774.	4.7	163
35	Androgen action and metabolism in prostate cancer. Molecular and Cellular Endocrinology, 2012, 360, 3-13.	3.2	153
36	SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2015, 21, 4698-4708.	7.0	137

#	Article	IF	CITATIONS
37	Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nature Communications, 2016, 7, 13668.	12.8	134
38	Urinary TMPRSS2:ERG and PCA3 in an Active Surveillance Cohort: Results from a Baseline Analysis in the Canary Prostate Active Surveillance Study. Clinical Cancer Research, 2013, 19, 2442-2450.	7.0	132
39	Molecular States Underlying Androgen Receptor Activation: A Framework for Therapeutics Targeting Androgen Signaling in Prostate Cancer. Journal of Clinical Oncology, 2012, 30, 644-646.	1.6	122
40	Outcomes of Active Surveillance for Clinically Localized Prostate Cancer in the Prospective, Multi-Institutional Canary PASS Cohort. Journal of Urology, 2016, 195, 313-320.	0.4	122
41	Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 2012, 15, 123-131.	14.4	120
42	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	30.7	113
43	<i>Pten</i> Null Prostate Epithelium Promotes Localized Myeloid-Derived Suppressor Cell Expansion and Immune Suppression during Tumor Initiation and Progression. Molecular and Cellular Biology, 2014, 34, 2017-2028.	2.3	107
44	Histologic Grading of Prostatic Adenocarcinoma Can Be Further Optimized. American Journal of Surgical Pathology, 2016, 40, 1439-1456.	3.7	107
45	Combined <i>MYC</i> Activation and <i>Pten</i> Loss Are Sufficient to Create Genomic Instability and Lethal Metastatic Prostate Cancer. Cancer Research, 2016, 76, 283-292.	0.9	102
46	ERG Activates the YAP1 Transcriptional Program and Induces the Development of Age-Related Prostate Tumors. Cancer Cell, 2015, 27, 797-808.	16.8	100
47	Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 2017, 19, 2045-2059.	6.4	99
48	Microsatellite instability in prostate cancer by PCR or next-generation sequencing. , 2018, 6, 29.		96
49	Analysis of testosterone and dihydrotestosterone from biological fluids as the oxime derivatives using highâ€performance liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3200-3206.	1.5	92
50	Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 2014, 5, 9939-9951.	1.8	92
51	Association of Clonal Hematopoiesis in DNA Repair Genes With Prostate Cancer Plasma Cell-free DNA Testing Interference. JAMA Oncology, 2021, 7, 107.	7.1	90
52	Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight, 2019, 4, .	5.0	90
53	Comprehensive analyses of prostate gene expression: Convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis, 2000, 21, 1823-1831.	2.4	86
54	Castration-resistant prostate cancer: Targeting androgen metabolic pathways in recurrent disease. Urologic Oncology: Seminars and Original Investigations, 2009, 27, 251-257.	1.6	86

#	Article	IF	CITATIONS
55	A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS ONE, 2018, 13, e0198389.	2.5	86
56	Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Research, 2019, 79, 2580-2592.	0.9	85
57	Toll receptors: an expanding role in our understanding of human disease. Journal of Leukocyte Biology, 2000, 67, 767-773.	3.3	84
58	Neoadjuvant Enzalutamide Prior to Prostatectomy. Clinical Cancer Research, 2017, 23, 2169-2176.	7.0	80
59	Canary Prostate Active Surveillance Study: Design of a Multi-institutional Active Surveillance Cohort and Biorepository. Urology, 2010, 75, 407-413.	1.0	70
60	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	12.8	70
61	Supraphysiological androgens suppress prostate cancer growth through androgen receptor–mediated DNA damage. Journal of Clinical Investigation, 2019, 129, 4245-4260.	8.2	67
62	Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget, 2016, 7, 82504-82510.	1.8	64
63	Mismatch repair deficiency in metastatic prostate cancer: Response to PD-1 blockade and standard therapies. PLoS ONE, 2020, 15, e0233260.	2.5	63
64	Evaluating the Four Kallikrein Panel of the 4Kscore for Prediction of High-grade Prostate Cancer in Men in the Canary Prostate Active Surveillance Study. European Urology, 2017, 72, 448-454.	1.9	61
65	PTEN Loss as Determined by Clinical-grade Immunohistochemistry Assay Is Associated with Worse Recurrence-free Survival in Prostate Cancer. European Urology Focus, 2016, 2, 180-188.	3.1	60
66	Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene, 2020, 39, 6935-6949.	5.9	60
67	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	12.8	59
68	Cellular Constituents of the Prostate Stroma: Key Contributors to Prostate Cancer Progression and Therapy Resistance. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030510.	6.2	57
69	Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations. Cancer Research, 2018, 78, 4716-4730.	0.9	56
70	A multicenter study shows <i>PTEN</i> deletion is strongly associated with seminal vesicle involvement and extracapsular extension in localized prostate cancer. Prostate, 2015, 75, 1206-1215.	2.3	55
71	<scp>EZH</scp> 2 cooperates with gainâ€ofâ€function p53 mutants to promote cancer growth and metastasis. EMBO Journal, 2019, 38, .	7.8	55
72	Characterization of osteoblastic and osteolytic proteins in prostate cancer bone metastases. Prostate, 2013, 73, 932-940.	2.3	53

#	Article	IF	CITATIONS
73	Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy. PLoS ONE, 2015, 10, e0130565.	2.5	48
74	Precision Medicine in Active Surveillance for Prostate Cancer: Development of the Canary–Early Detection Research Network Active Surveillance Biopsy Risk Calculator. European Urology, 2015, 68, 1083-1088.	1.9	48
75	Post prostatectomy outcomes of patients with high-risk prostate cancer treated with neoadjuvant androgen blockade. Prostate Cancer and Prostatic Diseases, 2018, 21, 364-372.	3.9	48
76	17-Gene Genomic Prostate Score Test Results in the Canary Prostate Active Surveillance Study (PASS) Cohort. Journal of Clinical Oncology, 2020, 38, 1549-1557.	1.6	48
77	Unconventional therapy for prostate cancer: good, bad or questionable?. Nature Reviews Cancer, 2003, 3, 845-858.	28.4	47
78	The androgen receptor regulates a druggable translational regulon in advanced prostate cancer. Science Translational Medicine, 2019, 11, .	12.4	47
79	Contribution of Adrenal Glands to Intratumor Androgens and Growth of Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 426-439.	7.0	46
80	Durable Response of Enzalutamide-resistant Prostate Cancer to Supraphysiological Testosterone Is Associated with a Multifaceted Growth Suppression and Impaired DNA Damage Response Transcriptomic Program in Patient-derived Xenografts. European Urology, 2020, 77, 144-155.	1.9	46
81	Characterizing the molecular features of ERC-positive tumors in primary and castration resistant prostate cancer. Prostate, 2016, 76, 810-822.	2.3	45
82	Concordance of DNA Repair Gene Mutations in Paired Primary Prostate Cancer Samples and Metastatic Tissue or Cell-Free DNA. JAMA Oncology, 2021, 7, 1378.	7.1	40
83	Digital expression profiles of the prostate androgen-response program. Journal of Steroid Biochemistry and Molecular Biology, 2002, 80, 13-23.	2.5	39
84	DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget, 2015, 6, 2134-2147.	1.8	38
85	Recent advances in prostate cancer research: large-scale genomic analyses reveal novel driver mutations and DNA repair defects. F1000Research, 2018, 7, 1173.	1.6	37
86	Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clinical Epigenetics, 2016, 8, 97.	4.1	34
87	Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations. Molecular Cancer Research, 2016, 14, 374-384.	3.4	34
88	Regulation of CEACAM5 and Therapeutic Efficacy of an Anti-CEACAM5–SN38 Antibody–drug Conjugate in Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2021, 27, 759-774.	7.0	34
89	Epithelial mesenchymal-like transition occurs in a subset of cells in castration resistant prostate cancer bone metastases. Clinical and Experimental Metastasis, 2016, 33, 239-248.	3.3	33
90	Screening Men at Increased Risk for Prostate Cancer Diagnosis: Model Estimates of Benefits and Harms. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 222-227.	2.5	33

#	Article	IF	CITATIONS
91	Upregulation of Scavenger Receptor B1 Is Required for Steroidogenic and Nonsteroidogenic Cholesterol Metabolism in Prostate Cancer. Cancer Research, 2019, 79, 3320-3331.	0.9	33
92	BET Bromodomain Inhibition Blocks an AR-Repressed, E2F1-Activated Treatment-Emergent Neuroendocrine Prostate Cancer Lineage Plasticity Program. Clinical Cancer Research, 2021, 27, 4923-4936.	7.0	33
93	The Aged Microenvironment Influences the Tumorigenic Potential of Malignant Prostate Epithelial Cells. Molecular Cancer Research, 2019, 17, 321-331.	3.4	32
94	Imaging Fibroblast Activation Protein Alpha Improves Diagnosis of Metastatic Prostate Cancer with Positron Emission Tomography. Clinical Cancer Research, 2020, 26, 4882-4891.	7.0	32
95	Chemotherapy-Induced Monoamine Oxidase Expression in Prostate Carcinoma Functions as a Cytoprotective Resistance Enzyme and Associates with Clinical Outcomes. PLoS ONE, 2014, 9, e104271.	2.5	30
96	Refined Analysis of Prostate-specific Antigen Kinetics to Predict Prostate Cancer Active Surveillance Outcomes. European Urology, 2018, 74, 211-217.	1.9	30
97	Identification of Therapeutic Vulnerabilities in Small-cell Neuroendocrine Prostate Cancer. Clinical Cancer Research, 2020, 26, 1667-1677.	7.0	30
98	Tailoring Intensity of Active Surveillance for Low-Risk Prostate Cancer Based on Individualized Prediction of Risk Stability. JAMA Oncology, 2020, 6, e203187.	7.1	30
99	Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nature Communications, 2021, 12, 4217.	12.8	30
100	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	1.8	29
101	Evaluation of ERG and SPINK1 by Immunohistochemical Staining and Clinicopathological Outcomes in a Multi-Institutional Radical Prostatectomy Cohort of 1067 Patients. PLoS ONE, 2015, 10, e0132343.	2.5	28
102	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	3.0	28
103	The heterogeneity of prostate cancers lacking AR activity will require diverse treatment approaches. Endocrine-Related Cancer, 2021, 28, T51-T66.	3.1	28
104	The human (PEDB) and mouse (mPEDB) Prostate Expression Databases. Nucleic Acids Research, 2002, 30, 218-220.	14.5	27
105	A Model for the Design and Construction of a Resource for the Validation of Prognostic Prostate Cancer Biomarkers. Advances in Anatomic Pathology, 2013, 20, 39-44.	4.3	24
106	Gene expression panel predicts metastaticâ€lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Molecular Oncology, 2017, 11, 140-150.	4.6	24
107	Prostate Cancer Screening in a New Era of Genetics. Clinical Genitourinary Cancer, 2017, 15, 625-628.	1.9	24
108	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.9	24

#	Article	IF	CITATIONS
109	A Novel Flavonoid Composition Targets Androgen Receptor Signaling and Inhibits Prostate Cancer Growth in Preclinical Models. Neoplasia, 2018, 20, 789-799.	5.3	23
110	Targeting RET Kinase in Neuroendocrine Prostate Cancer. Molecular Cancer Research, 2020, 18, 1176-1188.	3.4	23
111	Selective androgen receptor modulators activate the canonical prostate cancer androgen receptor program and repress cancer growth. Journal of Clinical Investigation, 2021, 131, .	8.2	23
112	Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer and Prostatic Diseases, 2019, 22, 438-445.	3.9	22
113	Comparison of four next generation sequencing platforms for fusion detection: Oncomine by ThermoFisher, AmpliSeq by illumina, FusionPlex by ArcherDX, and QIAseq by QIAGEN. Cancer Genetics, 2020, 243, 11-18.	0.4	22
114	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCl Insight, 2021, 6, .	5.0	22
115	A Pilot Study of Clinical Targeted Next Generation Sequencing for Prostate Cancer: Consequences for Treatment and Genetic Counseling. Prostate, 2016, 76, 1303-1311.	2.3	21
116	Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms. Journal of Urology, 2018, 199, 1494-1501.	0.4	21
117	Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Oncotarget, 2017, 8, 6179-6192.	1.8	21
118	Retinol dehydrogenase 11 is essential for the maintenance of retinol homeostasis in liver and testis in mice. Journal of Biological Chemistry, 2018, 293, 6996-7007.	3.4	20
119	Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nature Cell Biology, 2022, 24, 538-553.	10.3	20
120	Loss of Expression of AZGP1 Is Associated With Worse Clinical Outcomes in a Multi-Institutional Radical Prostatectomy Cohort. Prostate, 2016, 76, 1409-1419.	2.3	19
121	<scp>HPV16</scp> induces penile intraepithelial neoplasia and squamous cell carcinoma in transgenic mice: first mouse model for <scp>HPV</scp> â€related penile cancer. Journal of Pathology, 2020, 251, 411-419.	4.5	19
122	Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4. Neoplasia, 2020, 22, 253-262.	5.3	19
123	MUC1 Expression by Immunohistochemistry Is Associated with Adverse Pathologic Features in Prostate Cancer: A Multi-Institutional Study. PLoS ONE, 2016, 11, e0165236.	2.5	19
124	Clinical determinants for successful circulating tumor DNA analysis in prostate cancer. Prostate, 2019, 79, 701-708.	2.3	18
125	RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer. Cancer Research, 2021, 81, 4736-4750.	0.9	18
126	A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: implications for precision cancer medicine. Oncotarget, 2016, 7, 52888-52899.	1.8	18

#	Article	IF	CITATIONS
127	Exploiting AR-Regulated Drug Transport to Induce Sensitivity to the Survivin Inhibitor YM155. Molecular Cancer Research, 2017, 15, 521-531.	3.4	17
128	ETS Related Gene mediated Androgen Receptor Aggregation and Endoplasmic Reticulum Stress in Prostate Cancer Development. Scientific Reports, 2017, 7, 1109.	3.3	17
129	Spheroid culture of LuCaP 147 as an authentic preclinical model of prostate cancer subtype with SPOP mutation and hypermutator phenotype. Cancer Letters, 2014, 351, 272-280.	7.2	16
130	Expression of cell cycle-regulated genes and prostate cancer prognosis in a population-based cohort. Prostate, 2015, 75, 1354-1362.	2.3	16
131	Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer. Clinical and Experimental Metastasis, 2016, 33, 325-337.	3.3	16
132	Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer. Oncotarget, 2018, 9, 6550-6561.	1.8	16
133	Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer. JCI Insight, 2021, 6, .	5.0	15
134	Mismatch repair enzyme expression in primary and castrate resistant prostate cancer. Asian Journal of Urology, 2016, 3, 223-228.	1.2	14
135	DNA Damage Induces a Secretory Program in the Quiescent TME that Fosters Adverse Cancer Phenotypes. Molecular Cancer Research, 2017, 15, 842-851.	3.4	14
136	Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate, 2019, 79, 1530-1542.	2.3	14
137	Two Steps Forward and One Step Back for Precision in Prostate Cancer Treatment. Journal of Clinical Oncology, 2020, 38, 3740-3742.	1.6	14
138	Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy. Prostate Cancer and Prostatic Diseases, 2019, 22, 560-568.	3.9	13
139	Establishing a cryopreservation protocol for patientâ€derived xenografts of prostate cancer. Prostate, 2019, 79, 1326-1337.	2.3	12
140	Reciprocal <scp>YAP1</scp> loss and <scp>INSM1</scp> expression in neuroendocrine prostate cancer. Journal of Pathology, 2021, 255, 425-437.	4.5	12
141	Docetaxel-related toxicity in metastatic hormone-sensitive and metastatic castration-resistant prostate cancer. Medical Oncology, 2016, 33, 77.	2.5	11
142	Computational modeling identifies multitargeted kinase inhibitors as effective therapies for metastatic, castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
143	Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2022, 28, 3127-3140.	7.0	11
144	Assessment of Androgen Receptor Splice Variant-7 as a Biomarker of Clinical Response in Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2022, 28, 3509-3525.	7.0	11

#	Article	IF	CITATIONS
145	The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma. Molecular Cancer Research, 2015, 13, 339-347.	3.4	10
146	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie - International Edition, 2016, 55, 8975-8978.	13.8	10
147	Analysis of separate training and validation radical prostatectomy cohorts identifies 0.25 mm diameter as an optimal definition for "large―cribriform prostatic adenocarcinoma. Modern Pathology, 2022, 35, 1092-1100.	5.5	10
148	Prostate cancer genomics. Current Urology Reports, 2001, 2, 70-78.	2.2	9
149	A proteolytic modification of AIM promotes its renal excretion. Scientific Reports, 2016, 6, 38762.	3.3	9
150	Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages. , 2020, 8, e001510.		9
151	Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight, 2022, 7, .	5.0	9
152	Identification of Combinatorial Genomic Abnormalities Associated with Prostate Cancer Early Recurrence. Journal of Molecular Diagnostics, 2016, 18, 215-224.	2.8	8
153	High-Resolution Genomic Profiling of Disseminated Tumor Cells in Prostate Cancer. Journal of Molecular Diagnostics, 2016, 18, 131-143.	2.8	8
154	A comparison of prostate cancer cell transcriptomes in 2D monoculture vs 3D xenografts identify consistent gene expression alterations associated with tumor microenvironments. Prostate, 2020, 80, 491-499.	2.3	8
155	Targeting backdoor androgen synthesis through AKR1C3 inhibition: A presurgical hormonal ablative neoadjuvant trial in highâ€risk localized prostate cancer. Prostate, 2021, 81, 418-426.	2.3	8
156	Paracrine Wnt signaling is necessary for prostate epithelial proliferation. Prostate, 2022, 82, 517-530.	2.3	8
157	PEG10 Promoter–Driven Expression of Reporter Genes Enables Molecular Imaging of Lethal Prostate Cancer. Cancer Research, 2019, 79, 5668-5680.	0.9	7
158	The Path of Most Resistance: Transdifferentiation Underlies Exceptional Nonresponses to Androgen Receptor Pathway Inhibition in Prostate Cancer. Cancer Discovery, 2017, 7, 673-674.	9.4	6
159	Prostate Cancer Characteristics Associated with Response to Pre-Receptor Targeting of the Androgen Axis. PLoS ONE, 2014, 9, e111545.	2.5	6
160	Development and validation of a quantitative reactive stroma biomarker (qRS) for prostate cancer prognosis. Human Pathology, 2022, 122, 84-91.	2.0	6
161	<i>BRCA2</i> Alterations in Neuroendocrine/Small-Cell Carcinoma Prostate Cancer: A Case Series. JCO Precision Oncology, 2022, , .	3.0	6
162	Anti-Depressant Therapy Brightens the Outlook for Prostate Cancer Bone Metastases. Cancer Cell, 2017, 31, 303-305.	16.8	5

#	Article	IF	CITATIONS
163	Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature. PLoS ONE, 2021, 16, e0245602.	2.5	5
164	Comprehensive Assessment of Anaplastic Lymphoma Kinase in Localized and Metastatic Prostate Cancer Reveals Targetable Alterations. Cancer Research Communications, 2022, 2, 277-285.	1.7	4
165	Treatment in the absence of disease reclassification among men on active surveillance for prostate cancer. Cancer, 2022, 128, 269-274.	4.1	3
166	Prognostic Genomic Biomarkers in Patients With Localized Prostate Cancer. JAMA Oncology, 2021, 7, 59.	7.1	3
167	Evaluating the Outcomes of Active Surveillance in Grade Group 2 Prostate Cancer: Prospective Results from the Canary PASS Cohort. Journal of Urology, 2022, 207, 805-813.	0.4	3
168	Germline mutations in penetrant cancer predisposition genes are rare in men with prostate cancer selecting active surveillance. Cancer Medicine, 2022, , .	2.8	3
169	Comprehensive analyses of prostate gene expression: Convergence of expressed sequence tag databases, transcript profiling and proteomics. Electrophoresis, 2000, 21, 1823-1831.	2.4	2
170	INTRACRINE SYNTHESIS OF ANDROGENS BY PROSTATE CANCER IN RESPONSE TO ANDROGEN DEPRIVATION THERAPY. , 2011, , 193-218.		2
171	Cell type-specific analyses for identifying prostate cancer biomarkers. Current Urology Reports, 2006, 7, 57-63.	2.2	1
172	Effect of Diagnostic Biopsy Practice Location on Grade/Volume Reclassification in Active Surveillance for Prostate Cancer: A Multicenter Analysis from the Canary PASS Cohort. Urology Practice, 2021, 8, 576-582.	0.5	1
173	A BAYESIAN FRAMEWORK FOR DATA AND HYPOTHESES DRIVEN FUSION OF HIGH THROUGHPUT DATA: APPLICATION TO MOUSE ORGANOGENESIS. , 2007, , .		1
174	Crossâ€Platform DNA Encoding for Singleâ€Cell Imaging of Gene Expression. Angewandte Chemie, 2016, 128, 9121-9124.	2.0	0