Anatoly Frenkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5005685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the phase-change mechanism of rewritable optical media. Nature Materials, 2004, 3, 703-708.	27.5	1,193
2	Hydrogenâ€Evolution Catalysts Based on Nonâ€Noble Metal Nickel–Molybdenum Nitride Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 6131-6135.	13.8	1,174
3	Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nature Materials, 2009, 8, 325-330.	27.5	728
4	A View from the Inside:  Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles. Journal of Physical Chemistry B, 2001, 105, 12689-12703.	2.6	601
5	Nanoporous Copper–Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO ₂ to Ethylene and Ethanol. Journal of the American Chemical Society, 2018, 140, 5791-5797.	13.7	599
6	Insights into the Interplay of Lewis and BrÃ,nsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 2013, 135, 3997-4006.	13.7	586
7	Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. Journal of the American Chemical Society, 2003, 125, 10684-10692.	13.7	490
8	Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catalysis, 2012, 2, 1793-1801.	11.2	423
9	Shape-Dependent Catalytic Properties of Pt Nanoparticles. Journal of the American Chemical Society, 2010, 132, 15714-15719.	13.7	387
10	Experimental and Theoretical Studies on the Reaction of H2 with NiO:  Role of O Vacancies and Mechanism for Oxide Reduction. Journal of the American Chemical Society, 2002, 124, 346-354.	13.7	322
11	Structural Characterization of Carbon-Supported Platinumâ^'Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu5C(CO)16. Journal of the American Chemical Society, 1997, 119, 7760-7771.	13.7	310
12	A review of defect structure and chemistry in ceria and its solid solutions. Chemical Society Reviews, 2020, 49, 554-592.	38.1	298
13	Selective CO ₂ Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation. Journal of the American Chemical Society, 2018, 140, 16042-16047.	13.7	296
14	Correlating Particle Size and Shape of Supported Ru/Ĵ³-Al ₂ O ₃ Catalysts with NH ₃ Decomposition Activity. Journal of the American Chemical Society, 2009, 131, 12230-12239.	13.7	279
15	Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chemical Society Reviews, 2012, 41, 8163.	38.1	262
16	Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nature Communications, 2016, 7, 12582.	12.8	261
17	Catalysis on singly dispersed bimetallic sites. Nature Communications, 2015, 6, 7938.	12.8	235
18	Reduction of CuO in H2: In Situ Time-Resolved XRD Studies. Catalysis Letters, 2003, 85, 247-254.	2.6	228

#	Article	IF	CITATIONS
19	Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Ptâ^Ru Coreâ^Shell and Alloy Nanoparticles. ACS Nano, 2009, 3, 3127-3137.	14.6	222
20	Core Shell Inversion during Nucleation and Growth of Bimetallic Pt/Ru Nanoparticles. Journal of the American Chemical Society, 1998, 120, 8093-8101.	13.7	215
21	Thermal expansion and x-ray-absorption fine-structure cumulants. Physical Review B, 1993, 48, 585-588.	3.2	213
22	Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nature Communications, 2018, 9, 1231.	12.8	213
23	Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 5091-5098.	4.6	206
24	Time-resolved Studies for the Mechanism of Reduction of Copper Oxides with Carbon Monoxide:Â Complex Behavior of Lattice Oxygen and the Formation of Suboxides. Journal of Physical Chemistry B, 2004, 108, 13667-13673.	2.6	187
25	Evidence for a terminal Pt(iv)-oxo complex exhibiting diverse reactivity. Nature, 2008, 455, 1093-1096.	27.8	187
26	Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. Journal of Materials Chemistry B, 2013, 1, 1968.	5.8	187
27	Platinum-Tin Oxide Core–Shell Catalysts for Efficient Electro-Oxidation of Ethanol. Journal of the American Chemical Society, 2014, 136, 10862-10865.	13.7	180
28	Lowâ€Temperature Transformation of Methane to Methanol on Pd ₁ O ₄ Single Sites Anchored on the Internal Surface of Microporous Silicate. Angewandte Chemie - International Edition, 2016, 55, 13441-13445.	13.8	180
29	In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 599-602.	13.7	169
30	Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2011, 133, 15172-15183.	13.7	167
31	Carbon Support Effects on Bimetallic Ptâ^'Ru Nanoparticles Formed from Molecular Precursors. Langmuir, 1999, 15, 690-700.	3.5	166
32	PtMo Alloy and MoO _{<i>x</i>} @Pt Coreâ^`Shell Nanoparticles as Highly CO-Tolerant Electrocatalysts. Journal of the American Chemical Society, 2009, 131, 6924-6925.	13.7	163
33	WGS Catalysis and In Situ Studies of CoO _{1â€"<i>>x</i>} , PtCo _{<i>n</i>} /Co ₃ O ₄ , and Pt _{<i>m</i>} Co _{<i>m</i>} Co _{<i>m</i>} Co _{<i>m</i>} Co _{<i>m</i>}	13.7	161
34	Nanoscale Disorder in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msub> < mml:mi> CaCu < /mml:mi> < mml:mn> 3 < /mml:mn> < /mml:msub> < mml:msub> < mml:r mathvariant="normal">O < /mml:mi> < mml:mn> 12 < /mml:mn> < /mml:msub> < /mml:math>: A New Route to the Enhanced Dielectric Response. Physical Review Letters. 2007. 99. 037602.	ni>Ti7.8	nl;mi> <mml: 159</mml:
35	Modeling the Structure and Composition of Nanoparticles by Extended X-Ray Absorption Fine-Structure Spectroscopy. Annual Review of Analytical Chemistry, 2011, 4, 23-39.	5.4	156
36	Catalysis and In Situ Studies of Rh ₁ /Co ₃ O ₄ Nanorods in	11.2	150

Reduction of NO with H₂. ACS Catalysis, 2013, 3, 1011-1019.

#	Article	IF	CITATIONS
37	Structural Rearrangement of Bimetallic Alloy PdAu Nanoparticles within Dendrimer Templates to Yield Core/Shell Configurations. Chemistry of Materials, 2008, 20, 1019-1028.	6.7	149
38	Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction. Journal of the American Chemical Society, 2008, 130, 1093-1101.	13.7	146
39	The Emergence of Nonbulk Properties in Supported Metal Clusters: Negative Thermal Expansion and Atomic Disorder in Pt Nanoclusters Supported on γ-Al ₂ O ₃ . Journal of the American Chemical Society, 2009, 131, 7040-7054.	13.7	145
40	Highâ€Temperature Treatment of Liâ€Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling. Advanced Energy Materials, 2017, 7, 1700708.	19.5	139
41	Reaction-Relevant Gold Structures in the Low Temperature Water-Gas Shift Reaction on Au-CeO ₂ . Journal of Physical Chemistry C, 2008, 112, 12834-12840.	3.1	135
42	Synthesis and Characterization of Pt Dendrimer-Encapsulated Nanoparticles: Effect of the Template on Nanoparticle Formation. Chemistry of Materials, 2008, 20, 5218-5228.	6.7	135
43	In Situ Characterization of CuFe ₂ O ₄ and Cu/Fe ₃ O ₄ Waterâ^Gas Shift Catalysts. Journal of Physical Chemistry C, 2009, 113, 14411-14417.	3.1	133
44	Unusual Non-Bulk Properties in Nanoscale Materials:Â Thermal Metalâ^'Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts. Journal of the American Chemical Society, 2006, 128, 12068-12069.	13.7	131
45	Intraparticle Reduction of Arsenite (As(III)) by Nanoscale Zerovalent Iron (nZVI) Investigated with In Situ X-ray Absorption Spectroscopy. Environmental Science & Technology, 2012, 46, 7018-7026.	10.0	127
46	Solving the 3D structure of metal nanoparticles. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 605-611.	0.8	125
47	How Strain Affects the Reactivity of Surface Metal Oxide Catalysts. Angewandte Chemie - International Edition, 2013, 52, 13553-13557.	13.8	124
48	A New Klebsiella planticola Strain (Cd-1) Grows Anaerobically at High Cadmium Concentrations and Precipitates Cadmium Sulfide. Applied and Environmental Microbiology, 2000, 66, 3083-3087.	3.1	123
49	Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature. Organic Geochemistry, 2004, 35, 747-762.	1.8	122
50	EXAFS Study of the Inner Shell Structure in Copper(II) Complexes with Humic Substances. Environmental Science & Technology, 1998, 32, 2699-2705.	10.0	120
51	Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(<i>g</i>), with Zirconium(IV) MOFs: An Ultrahigh-Vacuum and DFT Study. Journal of Physical Chemistry C, 2017, 121, 11261-11272.	3.1	120
52	Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nature Communications, 2015, 6, 7583.	12.8	118
53	Elimination of self-absorption in fluorescence hard-x-ray absorption spectra. Physical Review B, 1999, 60, 9335-9339.	3.2	117
54	Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. Journal of Chemical Physics, 2005, 123, 184701.	3.0	116

#	Article	IF	CITATIONS
55	Dopant location identification inNd3+-dopedTiO2nanoparticles. Physical Review B, 2005, 72, .	3.2	112
56	Active site electronic structure and dynamics during metalloenzyme catalysis. Nature Structural Biology, 2003, 10, 98-103.	9.7	109
57	Sub-Nanometer Au Monolayer-Protected Clusters Exhibiting Molecule-like Electronic Behavior:Â Quantitative High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy and Electrochemical Characterization of Clusters with Precise Atomic Stoichiometry. Journal of Physical Chemistry B. 2006. 110. 12874-12883.	2.6	107
58	Evolution of the Structure and Chemical State of Pd Nanoparticles during the in Situ Catalytic Reduction of NO with H ₂ . Journal of the American Chemical Society, 2011, 133, 13455-13464.	13.7	107
59	Synchrotron Techniques for In Situ Catalytic Studies: Capabilities, Challenges, and Opportunities. ACS Catalysis, 2012, 2, 2269-2280.	11.2	107
60	Controlling Speciation during CO ₂ Reduction on Cu-Alloy Electrodes. ACS Catalysis, 2020, 10, 672-682.	11.2	107
61	Catalysis and Photocatalysis by Nanoscale Au/TiO ₂ : Perspectives for Renewable Energy. ACS Energy Letters, 2017, 2, 1223-1231.	17.4	105
62	"Inverting―X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catalysis, 2019, 9, 10192-10211.	11.2	105
63	Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. Journal of Synchrotron Radiation, 1999, 6, 293-295.	2.4	103
64	Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nature Communications, 2021, 12, 914.	12.8	103
65	High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 10637-10645.	11.2	98
66	Understanding the Role of Minor Molybdenum Doping in LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Electrodes: from Structural and Surface Analyses and Theoretical Modeling to Practical Electrochemical Cells. ACS Applied Materials & Interfaces, 2018, 10, 29608-29621.	8.0	97
67	Crystallographic Recognition Controls Peptide Binding for Bio-Based Nanomaterials. Journal of the American Chemical Society, 2011, 133, 12346-12349.	13.7	96
68	Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts. ACS Nano, 2015, 9, 5082-5092.	14.6	96
69	Giant Electrostriction in Gdâ€Doped Ceria. Advanced Materials, 2012, 24, 5857-5861.	21.0	95
70	Characterization of Palladium Nanoparticles by Using X-ray Reflectivity, EXAFS, and Electron Microscopy. Langmuir, 2006, 22, 807-816.	3.5	93
71	Reduction of Nitric Oxide with Hydrogen on Catalysts of Singly Dispersed Bimetallic Sites Pt ₁ Co _{<i>m</i>} and Pd ₁ Co _{<i>n</i>} . ACS Catalysis, 2016, 6, 840-850.	11.2	93
72	Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations. Journal of Physical Chemistry C, 2011, 115, 17884-17890.	3.1	92

#	Article	IF	CITATIONS
73	XANES Study of Cu2+-Binding Sites in Aquatic Humic Substances. Environmental Science & Technology, 2000, 34, 2138-2142.	10.0	91
74	Electronic and Magnetic Properties of Ultrathin Au/Pt Nanowires. Nano Letters, 2009, 9, 3177-3184.	9.1	91
75	Strain energy density in the x-ray powder diffraction from mixed crystals and alloys. Journal of Physics Condensed Matter, 2000, 12, 8081-8088.	1.8	89
76	Solving the Structure of Size-Selected Pt Nanocatalysts Synthesized by Inverse Micelle Encapsulation. Journal of the American Chemical Society, 2010, 132, 8747-8756.	13.7	89
77	Conversion of Methane to Methanol with a Bent Mono(μ-oxo)dinickel Anchored on the Internal Surfaces of Micropores. Langmuir, 2014, 30, 8558-8569.	3.5	87
78	Structural Analysis of PdAu Dendrimer-Encapsulated Bimetallic Nanoparticles. Langmuir, 2010, 26, 1137-1146.	3.5	86
79	Nature of WO _{<i>x</i>} Sites on SiO ₂ and Their Molecular Structure–Reactivity/Selectivity Relationships for Propylene Metathesis. ACS Catalysis, 2016, 6, 3061-3071.	11.2	86
80	Effects of surface disorder on EXAFS modeling of metallic clusters. Physical Review B, 2010, 81, .	3.2	85
81	Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy. Physical Review Letters, 2018, 120, 225502.	7.8	85
82	Phase speciation by extended x-ray absorption fine structure spectroscopy. Journal of Chemical Physics, 2002, 116, 9449-9456.	3.0	81
83	Metal Core Bonding Motifs of Monodisperse Icosahedral Au13and Larger Au Monolayer-Protected Clusters As Revealed by X-ray Absorption Spectroscopy and Transmission Electron Microscopy. Journal of Physical Chemistry B, 2006, 110, 14564-14573.	2.6	81
84	Catalysis on Singly Dispersed Rh Atoms Anchored on an Inert Support. ACS Catalysis, 2018, 8, 110-121.	11.2	81
85	In Situ Elucidation of the Active State of Co–CeO _{<i>x</i>} Catalysts in the Dry Reforming of Methane: The Important Role of the Reducible Oxide Support and Interactions with Cobalt. ACS Catalysis, 2018, 8, 3550-3560.	11.2	80
86	Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning. Nano Letters, 2019, 19, 520-529.	9.1	80
87	In Situ Electrochemical X-ray Absorption Spectroscopy of Oxygen Reduction Electrocatalysis with High Oxygen Flux. Journal of the American Chemical Society, 2012, 134, 197-200.	13.7	79
88	Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and x-ray spectroscopy simulations. Physical Review B, 2008, 78, .	3.2	77
89	display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> Se <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>single crystals with double chains of FeSe</mml:math 	3.2	75
90	tetrahedra. Physical Review B, 2011, 84, . Determining Peptide Sequence Effects That Control the Size, Structure, and Function of Nanoparticles. ACS Nano, 2012, 6, 1625-1636.	14.6	75

#	Article	IF	CITATIONS
91	An Experimental and Theoretical Investigation of the Inversion of Pd@Pt Core@Shell Dendrimer-Encapsulated Nanoparticles. ACS Nano, 2013, 7, 9345-9353.	14.6	75
92	Photo–thermo Catalytic Oxidation over a TiO ₂ â€₩O ₃ â€Supported Platinum Catalyst. Angewandte Chemie - International Edition, 2020, 59, 12909-12916.	13.8	75
93	Controlled Doping of MS ₂ (M=W, Mo) Nanotubes and Fullereneâ€like Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 1148-1151.	13.8	73
94	Time Resolved in Situ XAFS Study of the Electrochemical Oxygen Intercalation in SrFeO _{2.5} Brownmillerite Structure: Comparison with the Homologous SrCoO _{2.5} System. Journal of Physical Chemistry C, 2011, 115, 1311-1322.	3.1	72
95	Noncrystalline-to-Crystalline Transformations in Pt Nanoparticles. Journal of the American Chemical Society, 2013, 135, 13062-13072.	13.7	71
96	Periodicity and Atomic Ordering in Nanosized Particles of Crystals. Journal of Physical Chemistry C, 2008, 112, 8907-8911.	3.1	70
97	Local Structure and Electronic State of Atomically Dispersed Pt Supported on Nanosized CeO ₂ . ACS Catalysis, 2019, 9, 8738-8748.	11.2	70
98	Local Structure and Strainâ€induced Distortion in Ce _{0.8} Gd _{0.2} O _{1.9} . Advanced Materials, 2010, 22, 1659-1662.	21.0	69
99	Subnanometer Substructures in Nanoassemblies Formed from Clusters under a Reactive Atmosphere Revealed Using Machine Learning. Journal of Physical Chemistry C, 2018, 122, 21686-21693.	3.1	69
100	Endogenous Dynamic Nuclear Polarization for Natural Abundance ¹⁷ O and Lithium NMR in the Bulk of Inorganic Solids. Journal of the American Chemical Society, 2019, 141, 451-462.	13.7	69
101	Dynamics of CrO ₃ –Fe ₂ O ₃ Catalysts during the High-Temperature Water-Gas Shift Reaction: Molecular Structures and Reactivity. ACS Catalysis, 2016, 6, 4786-4798.	11.2	68
102	Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction. Applied Catalysis B: Environmental, 2018, 237, 1003-1011.	20.2	67
103	Multiple-scattering x-ray-absorption fine-structure analysis and thermal expansion of alkali halides. Physical Review B, 1993, 48, 12449-12458.	3.2	66
104	Local structure of disordered Au-Cu and Au-Ag alloys. Physical Review B, 2000, 62, 9364-9371.	3.2	66
105	Geometrical Characteristics of Regular Polyhedra: Application to EXAFS Studies of Nanoclusters. AIP Conference Proceedings, 2007, , .	0.4	66
106	<i>In-situ</i> extended X-ray absorption fine structure study of electrostriction in Gd doped ceria. Applied Physics Letters, 2015, 106, .	3.3	66
107	Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy. Journal of Chemical Physics, 2008, 129, 234502.	3.0	64
108	Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. Journal of Materials Chemistry, 2011, 21, 8887.	6.7	64

#	ARTICLE n of the local structure at the phase transition in CeO <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
109	xmins:mmi= http://www.w3.org/1998/Math/Math/ML_display= inline > <mmi:msub><mmi:mrow /><mml:mn>2</mml:mn>-Gd<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math< td=""><td>3.2</td><td>64</td></mml:math<></mml:math </mmi:mrow </mmi:msub>	3.2	64
110	Surface ReO _{<i>x</i>) Sites on Al₂O₃ and Their Molecular Structure–Reactivity Relationships for Olefin Metathesis. ACS Catalysis, 2015, 5, 1432-1444.}	11.2	64
111	Preparation of (Ga _{1â[^]<i>x</i>} Zn _{<i>x</i>})(N _{1â[^]<i>x</i>} O _{<i>x</i>}) Photocatalysts from the Reaction of NH ₃ with Ga ₂ O ₃ /ZnO and ZnGa ₂ O ₄ : In Situ Time-Resolved XRD and XAFS Studies. Journal of Physical	3.1	63
112	A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chemical Science, 2013, 4, 2912.	7.4	63
113	Origin of Polarity in Amorphous <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2007, 99, 215502.	7.8	60
114	In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects. Physical Chemistry Chemical Physics, 2012, 14, 11457.	2.8	60
115	Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. Journal of Chemical Physics, 2019, 151, 164201.	3.0	60
116	Birnessite catalysis of the Maillard Reaction: Its significance in natural humification. Geophysical Research Letters, 2001, 28, 3899-3902.	4.0	59
117	Cobalt–polypyrrole–carbon black (Co–PPY–CB) electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells: Composition and kinetic activity. Applied Catalysis B: Environmental, 2011, 105, 50-60.	20.2	59
118	Solving the structure of disordered mixed salts. Physical Review B, 1994, 49, 11662-11674.	3.2	58
119	Nanoscale disorder and local electronic properties of <mm:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> CaCu </mml:mtext> </mml:mrow> <mml:mr An integrated study of electron, neutron, and x-ray diffraction, x-ray absorption fine structu.</mml:mr </mml:msub></mml:mrow></mm:math 	1> 3.∕/ mm	:ന ടെ നന</td
120	Carbon-Supported IrNi Core–Shell Nanoparticles: Synthesis, Characterization, and Catalytic Activity. Journal of Physical Chemistry C, 2011, 115, 9894-9902.	3.1	58
121	Short range order in bimetallic nanoalloys: An extended X-ray absorption fine structure study. Journal of Chemical Physics, 2013, 138, 064202.	3.0	58
122	Multi-Stage Structural Transformations in Zero-Strain Lithium Titanate Unveiled by <i>in Situ</i> X-ray Absorption Fingerprints. Journal of the American Chemical Society, 2017, 139, 16591-16603.	13.7	57
123	The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts. Applied Catalysis A: General, 2008, 339, 169-179.	4.3	56
124	Thermochromism in polydiacetylene-metal oxide nanocomposites. Journal of Materials Chemistry, 2012, 22, 7028.	6.7	56
125	Application of Operando XAS, XRD, and Raman Spectroscopy for Phase Speciation in Water Gas Shift Reaction Catalysts. ACS Catalysis, 2012, 2, 2216-2223.	11.2	56
126	Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem. Japanese Journal of Applied Physics, 2005, 44, 3345-3349.	1.5	55

#	Article	IF	CITATIONS
127	Origin of Bulklike Structure and Bond Length Disorder of Pt37and Pt6Ru31Clusters on Carbon:Â Comparison of Theory and Experiment. Journal of the American Chemical Society, 2006, 128, 131-142.	13.7	55
128	Size-dependent crystallinity and relative orientations of nano-Pt/ \hat{I}^3 -Al2O3. Microscopy and Microanalysis, 2008, 14, 184-185.	0.4	55
129	Buckled crystalline structure of mixed ionic salts. Physical Review Letters, 1993, 71, 3485-3488.	7.8	54
130	Development Plus Kinetic and Mechanistic Studies of a Prototype Supported-Nanoparticle Heterogeneous Catalyst Formation System in Contact with Solution: Ir(1,5-COD)Cl/l³-Al2O3and Its Reduction by H2to Ir(0)n/l³-Al2O3. Journal of the American Chemical Society, 2010, 132, 9701-9714.	13.7	54
131	Size dependent behavior of Fe ₃ O ₄ crystals during electrochemical (de)lithiation: an in situ X-ray diffraction, ex situ X-ray absorption spectroscopy, transmission electron microscopy and theoretical investigation. Physical Chemistry Chemical Physics, 2017, 19, 20867-20880	2.8	54
132	Identifying Dynamic Structural Changes of Active Sites in Pt–Ni Bimetallic Catalysts Using Multimodal Approaches. ACS Catalysis, 2018, 8, 4120-4131.	11.2	54
133	Microscopic origin of polarity in quasiamorphousBaTiO3. Physical Review B, 2005, 71, .	3.2	53
134	Influence of Adsorbates on the Electronic Structure, Bond Strain, and Thermal Properties of an Alumina-Supported Pt Catalyst. ACS Nano, 2012, 6, 5583-5595.	14.6	53
135	Local structural changes inKNbO3under high pressure. Physical Review B, 1997, 56, 10869-10877.	3.2	51
136	Rhombohedral Ordered Intermetallic Nanocatalyst Boosts the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 184-192.	11.2	51
137	Dilute Pd/Au Alloy Nanoparticles Embedded in Colloid-Templated Porous SiO ₂ : Stable Au-Based Oxidation Catalysts. Chemistry of Materials, 2019, 31, 5759-5768.	6.7	50
138	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	47.7	50
139	Single Atom Catalysts: A Review of Characterization Methods. Chemistry Methods, 2021, 1, 278-294.	3.8	49
140	Role of Lewis and BrÃ,nsted Acidity in Metal Chloride Catalysis in Organic Media: Reductive Etherification of Furanics. ACS Catalysis, 2017, 7, 7363-7370.	11.2	48
141	Self-extinguishing polymer/organoclay nanocomposites. Polymer Degradation and Stability, 2007, 92, 86-93.	5.8	47
142	Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles. Physical Review B, 2010, 82, .	3.2	47
143	An <i>in Situ</i> Study of Bond Strains in 1 nm Pt Catalysts and Their Sensitivities to Cluster–Support and Cluster–Adsorbate Interactions. Journal of Physical Chemistry C, 2013, 117, 23286-23294.	3.1	47
144	Flame Synthesis of Nanosized Cuâ^'Ceâ^'O, Niâ^'Ceâ^'O, and Feâ^'Ceâ^'O Catalysts for the Water-Gas Shift (WGS) Reaction. ACS Applied Materials & Interfaces, 2009, 1, 2624-2635.	8.0	46

#	Article	IF	CITATIONS
145	In situdiffuse reflectance IR spectroscopy and X-ray absorption spectroscopy for fast catalytic processes. Journal of Synchrotron Radiation, 2011, 18, 447-455.	2.4	46
146	Comparative in Operando Studies in Heterogeneous Catalysis: Atomic and Electronic Structural Features in the Hydrogenation of Ethylene over Supported Pd and Pt Catalysts. ACS Catalysis, 2015, 5, 1539-1551.	11.2	46
147	In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 12597-12609.	13.7	46
148	Relaxation and saturation of electrostriction in 10Âmol% Gd-doped ceria ceramics. Acta Materialia, 2018, 144, 411-418.	7.9	46
149	Metal–Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. ACS Applied Materials & Interfaces, 2020, 12, 14641-14661.	8.0	46
150	The Atomic Structural Dynamics of Î ³ -Al ₂ O ₃ Supported Irâ ^{^2} Pt Nanocluster Catalysts Prepared from a Bimetallic Molecular Precursor: A Study Using Aberration-Corrected Electron Microscopy and X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2011, 133, 3582-3591.	13.7	45
151	Electrodeposition of MoS _{<i>x</i>} Hydrogen Evolution Catalysts from Sulfur-Rich Precursors. ACS Applied Materials & Interfaces, 2019, 11, 32879-32886.	8.0	45
152	The origin of elastic anomalies in thin films of oxygen deficient ceria, CeO2â^'x. Solid State Ionics, 2010, 181, 1473-1477.	2.7	44
153	Structure, Chemical Composition, And Reactivity Correlations during the In Situ Oxidation of 2-Propanol. Journal of the American Chemical Society, 2011, 133, 6728-6735.	13.7	44
154	Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: effects of particle surface disorder. Chemical Science, 2015, 6, 6413-6419.	7.4	44
155	Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for <i>in situ</i> applications. Review of Scientific Instruments, 2010, 81, 015105.	1.3	43
156	Concentration-dependent short-range order in the relaxor ferroelectric(1â^'x)Pb(Sc,Ta)O3â^'xPbTiO3. Physical Review B, 2004, 70, .	3.2	42
157	Direct Separation of Short Range Order in Intermixed Nanocrystalline and Amorphous Phases. Physical Review Letters, 2002, 89, 285503.	7.8	41
158	Preparation of ordered SBA-15 mesoporous silica containing chelating groups. Study of the complexation of Euiiiinside the pore channels of the materials. New Journal of Chemistry, 2004, 28, 156-160.	2.8	41
159	X-ray Absorption Study of PdCu Bimetallic Alloy Nanoparticles Containing an Average of â^1/464 Atoms. Chemistry of Materials, 2009, 21, 4824-4829.	6.7	41
160	Controlling Anisotropic Growth of Colloidal ZnSe Nanostructures. Journal of the American Chemical Society, 2018, 140, 14627-14637.	13.7	41
161	Enhancing catalytic performance of dilute metal alloy nanomaterials. Communications Chemistry, 2020, 3, .	4.5	41
162	Hybrid Pt/Au Nanowires: Synthesis and Electronic Structure. Journal of Physical Chemistry C, 2008, 112, 14696-14701.	3.1	40

#	Article	IF	CITATIONS
163	Probing the Limits of Conventional Extended X-ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles. ACS Nano, 2015, 9, 4036-4042.	14.6	40
164	Lowâ€Temperature Transformation of Methane to Methanol on Pd ₁ O ₄ Single Sites Anchored on the Internal Surface of Microporous Silicate. Angewandte Chemie, 2016, 128, 13639-13643.	2.0	40
165	Key feature of the catalytic cycle of TNF-Â converting enzyme involves communication between distal protein sites and the enzyme catalytic core. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4931-4936.	7.1	39
166	Characterization of the Fe-Doped Mixed-Valent Tunnel Structure Manganese Oxide KOMS-2. Journal of Physical Chemistry C, 2011, 115, 21610-21619.	3.1	38
167	<i>Operando</i> Structure Determination of Cu and Zn on Supported MgO/SiO ₂ Catalysts during Ethanol Conversion to 1,3-Butadiene. ACS Catalysis, 2019, 9, 269-285.	11.2	38
168	Ethylene Dehydroaromatization over Gaâ€ZSMâ€5 Catalysts: Nature and Role of Gallium Speciation. Angewandte Chemie - International Edition, 2020, 59, 19592-19601.	13.8	38
169	Probing structural relaxation in nanosized catalysts by combining EXAFS and reverse Monte Carlo methods. Catalysis Today, 2017, 280, 274-282.	4.4	37
170	Buffer-Induced Acceleration and Inhibition in Polyoxometalate-Catalyzed Organophosphorus Ester Hydrolysis. ACS Catalysis, 2018, 8, 7068-7076.	11.2	37
171	Use of scattered radiation for absolute x-ray energy calibration. Review of Scientific Instruments, 1999, 70, 38-40.	1.3	36
172	Promotional Effects of Bismuth on the Formation of Platinumâ^'Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation. Crystal Growth and Design, 2011, 11, 594-599.	3.0	36
173	Enhancing ORR Performance of Bimetallic PdAg Electrocatalysts by Designing Interactions between Pd and Ag. ACS Applied Energy Materials, 2020, 3, 2342-2349.	5.1	36
174	Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography. Nature Communications, 2021, 12, 3441.	12.8	36
175	Unraveling the Impurity Location and Binding in Heavily Doped Semiconductor Nanocrystals: The Case of Cu in InAs Nanocrystals. Journal of Physical Chemistry C, 2013, 117, 13688-13696.	3.1	35
176	Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst. Journal of Power Sources, 2014, 262, 421-428.	7.8	35
177	Decoding reactive structures in dilute alloy catalysts. Nature Communications, 2022, 13, 832.	12.8	35
178	Modulating the dynamics of BrÃ,nsted acid sites on PtWOx inverse catalyst. Nature Catalysis, 2022, 5, 144-153.	34.4	35
179	Strain-Induced Bond Buckling and Its Role in Insulating Properties of Cr-DopedV2O3. Physical Review Letters, 2006, 97, 195502.	7.8	34
180	From Impurity Doping to Metallic Growth in Diffusion Doping: Properties and Structure of Silver-Doped InAs Nanocrystals. ACS Nano, 2015, 9, 10790-10800.	14.6	34

#	Article	IF	CITATIONS
181	Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method. Journal of the American Chemical Society, 2018, 140, 6249-6259.	13.7	33
182	Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 18902-18910.	2.8	33
183	Dynamic restructuring of supported metal nanoparticles and its implications for structure insensitive catalysis. Nature Communications, 2021, 12, 7096.	12.8	33
184	Tangential Ligand-Induced Strain in Icosahedral Au13. Journal of the American Chemical Society, 2007, 129, 10978-10979.	13.7	32
185	Formation of Second-Generation Nanoclusters on Metal Nanoparticles Driven by Reactant Gases. Nano Letters, 2016, 16, 5001-5009.	9.1	32
186	Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase. ACS Catalysis, 2017, 7, 191-204.	11.2	32
187	Critical review: Effects of complex interactions on structure and dynamics of supported metal catalysts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, .	2.1	31
188	Enhanced Electrokinetics of Câ^'C Bond Splitting during Ethanol Oxidation by using a Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO ₂ Shell. ChemCatChem, 2016, 8, 2876-2880.	3.7	31
189	Effect of Carbon Dioxide on the Degradation of Chemical Warfare Agent Simulant in the Presence of Zr Metal Organic Framework MOF-808. Chemistry of Materials, 2019, 31, 9904-9914.	6.7	31
190	Aging of Iron (Hydr)oxides by Heat Treatment and Effects on Heavy Metal Binding. Environmental Science & Technology, 2000, 34, 3991-4000.	10.0	30
191	Surface Modification of Nanoclays by Catalytically Active Transition Metal Ions. Langmuir, 2007, 23, 9808-9815.	3.5	30
192	Growth of V ₂ O ₃ thin films on <i>a</i> -plane (110) and <i>c</i> -plane (001) sapphire via pulsed-laser deposition. Journal of Materials Research, 2007, 22, 2825-2831.	2.6	29
193	Effects of Solution pH and Surface Chemistry on the Postdeposition Growth of Chemical Bath Deposited PbSe Nanocrystalline Films. Chemistry of Materials, 2007, 19, 879-888.	6.7	29
194	Operando Characterization of Catalysts through use of a Portable Microreactor. ChemCatChem, 2015, 7, 3683-3691.	3.7	29
195	Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 16533-16537.	13.8	29
196	Effects of Molecular and Electronic Structures in CoO <i>_x</i> /CeO ₂ Catalysts on NO Reduction by CO. Journal of Physical Chemistry C, 2019, 123, 7166-7177.	3.1	29
197	Designing Nanoplatelet Alloy/Nafion Catalytic Interface for Optimization of PEMFCs: Performance, Durability, and CO Resistance. ACS Catalysis, 2019, 9, 1446-1456.	11.2	29
198	Lattice strains in disordered mixed salts. Solid State Communications, 1996, 99, 67-71.	1.9	28

#	Article	IF	CITATIONS
199	Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials. ACS Nano, 2015, 9, 11968-11979.	14.6	28
200	New In-Situ and Operando Facilities for Catalysis Science at NSLS-II: The Deployment of Real-Time, Chemical, and Structure-Sensitive X-ray Probes. Synchrotron Radiation News, 2017, 30, 30-37.	0.8	28
201	<i>In Situ</i> Characterization of Mesoporous Co/CeO ₂ Catalysts for the High-Temperature Water-Gas Shift. Journal of Physical Chemistry C, 2018, 122, 8998-9008.	3.1	28
202	CO ₂ Methanation on Cu-Cluster Decorated Zirconia Supports with Different Morphology: A Combined Experimental In Situ GIXANES/GISAXS, Ex Situ XPS and Theoretical DFT Study. ACS Catalysis, 2021, 11, 6210-6224.	11.2	28
203	Spectroscopic Studies of Inhibited Alcohol Dehydrogenase fromThermoanaerobacterbrockii: Proposed Structure for the Catalytic Intermediate Stateâ€. Biochemistry, 2000, 39, 7702-7711.	2.5	27
204	In situ Xâ€ray Absorption Analysis of â^¼1.8 nm Dendrimerâ€Encapsulated Pt Nanoparticles during Electrochemical CO Oxidation. ChemPhysChem, 2010, 11, 2942-2950.	2.1	27
205	Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides. AIP Advances, 2016, 6, 055320.	1.3	27
206	Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with x-ray absorption spectroscopy. Journal of Chemical Physics, 2017, 146, 114201.	3.0	27
207	Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. Annual Review of Analytical Chemistry, 2019, 12, 501-522.	5.4	27
208	Latent Representation Learning for Structural Characterization of Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2086-2094.	4.6	27
209	Structural Characterization of the Catalytic Active Site in the Latent and Active Natural Gelatinase B from Human Neutrophils. Journal of Biological Chemistry, 2000, 275, 34335-34343.	3.4	26
210	Effect of light on birnessite catalysis of the Maillard reaction and its implication in humification. Canadian Journal of Soil Science, 2001, 81, 277-283.	1.2	26
211	Iridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)lr(μ-O ₂ C ₈ H ₁₅] ₂ and AlEt ₃ : Spectroscopic and Kinetic Evidence for the Ir _{<i>n</i>} Species Present and for Nanonarticles as the Eastest Catalyst, Inorganic Chemistry, 2010, 49, 8131-8147	4.0	26
212	Structure and physical properties of the layered iron oxychalcogenide BaFe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>Se<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>3.2</td><td>26</td></mml:mrow<></mml:msub></mml:math </mml:math 	3.2	26
213	<pre>/><mml:mn>2</mml:mn>O. Physical Review B, 2012, 86, . Activation of Surface ReO_{<i>x</i>} Sites on Al₂O₃ Catalysts for Olefin Metathesis. ACS Catalysis, 2015, 5, 6807-6814.</pre>	11.2	26
214	A combined theoretical and experimental EXAFS study of the structure and dynamics of Au ₁₄₇ nanoparticles. Catalysis Science and Technology, 2016, 6, 6879-6885.	4.1	26
215	Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 10335-10340.	13.8	26
216	Modeling Strain Distribution at the Atomic Level in Doped Ceria Films with Extended X-ray Absorption Fine Structure Spectroscopy. Inorganic Chemistry, 2019, 58, 7527-7536.	4.0	26

#	Article	IF	CITATIONS
217	XAFS analysis of particle size effect on local structure in BaTiO3. Journal of Synchrotron Radiation, 1999, 6, 515-517.	2.4	25
218	Electrosynthesis of ReS4. XAS Analysis of ReS2, Re2S7, and ReS4. Chemistry of Materials, 2004, 16, 151-158.	6.7	25
219	Reaction of CuO with hydrogen studied by using synchrotron-based x-ray diffraction. Journal of Physics Condensed Matter, 2004, 16, S3479-S3484.	1.8	25
220	Structural characterization of bimetallic nanomaterials with overlapping x-ray absorption edges. Physical Review B, 2009, 80, .	3.2	25
221	Industrial Ziegler-Type Hydrogenation Catalysts Made from Co(neodecanoate) ₂ or Ni(2-ethylhexanoate) ₂ and AlEt ₃ : Evidence for Nanoclusters and Sub-Nanocluster or Larger Ziegler-Nanocluster Based Catalysis. Langmuir, 2011, 27, 6279-6294.	3.5	25
222	Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure. Physical Chemistry Chemical Physics, 2016, 18, 19621-19630.	2.8	25
223	Reversed Nanoscale Kirkendall Effect in Au–InAs Hybrid Nanoparticles. Chemistry of Materials, 2016, 28, 8032-8043.	6.7	25
224	Higher Metalâ^Ligand Coordination in the Catalytic Site of Cobalt-SubstitutedThermoanaerobacter brockiiAlcohol Dehydrogenase Lowers the Barrier for Enzyme Catalysisâ€. Biochemistry, 2004, 43, 7151-7161.	2.5	24
225	Polymer nanocomposites based on transition metal ion modified organoclays. Polymer, 2007, 48, 827-840.	3.8	24
226	Interfacial Cu+ promoted surface reactivity: Carbon monoxide oxidation reaction over polycrystalline copper–titania catalysts. Surface Science, 2016, 652, 206-212.	1.9	24
227	Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition. Scientific Reports, 2017, 7, 773.	3.3	24
228	Multimodal Study of the Speciations and Activities of Supported Pd Catalysts During the Hydrogenation of Ethylene. Journal of Physical Chemistry C, 2017, 121, 18962-18972.	3.1	24
229	Evolution of steady-state material properties during catalysis: Oxidative coupling of methanol over nanoporous Ag0.03Au0.97. Journal of Catalysis, 2019, 380, 366-374.	6.2	24
230	Connections between the Speciation and Solubility of Ni(II) and Co(II) in Molten ZnCl ₂ . Journal of Physical Chemistry B, 2020, 124, 1253-1258.	2.6	24
231	Determination of Nanoparticle Size by Measuring the Metal–Metal Bond Length: The Case of Palladium Hydride. Journal of Physical Chemistry C, 2015, 119, 854-861.	3.1	23
232	Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 2019, 10, 2295-2299.	4.6	23
233	Nucleation and Initial Stages of Growth during the Atomic Layer Deposition of Titanium Oxide on Mesoporous Silica, Nano Letters, 2020, 20, 6884-6890 Local structural disorder and superconductivity in K <mml:math< td=""><td>9.1</td><td>23</td></mml:math<>	9.1	23
234	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mi>x</mml:mi></mml:mrow </mml:msub> Fe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mo>â^`</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:mrow xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mrow><td>3.2 b><td>22 nath>Se<mml< td=""></mml<></td></td></mml:mrow></mml:mrow </mml:msub></mml:msub></mml:msub></mml:math 	3.2 b> <td>22 nath>Se<mml< td=""></mml<></td>	22 nath>Se <mml< td=""></mml<>

#	Article	IF	CITATIONS
235	Thermal properties of nanoporous gold. Physical Review B, 2012, 85, .	3.2	22
236	Homogeneity and elemental distribution in self-assembled bimetallic Pd–Pt aerogels prepared by a spontaneous one-step gelation process. Physical Chemistry Chemical Physics, 2016, 18, 20640-20650.	2.8	22
237	Capture and Decomposition of the Nerve Agent Simulant, DMCP, Using the Zeolitic Imidazolate Framework (ZIF-8). ACS Applied Materials & Interfaces, 2020, 12, 58326-58338.	8.0	22
238	Multimodal Spectroscopic Study of Surface Termination Evolution in Cr ₂ TiC ₂ T <i>_x</i> MXene. Advanced Materials Interfaces, 2021, 8, 2001789.	3.7	22
239	Comparison of Decanethiolate Gold Nanoparticles Synthesized by One-Phase and Two-Phase Methods. Journal of Physical Chemistry B, 2006, 110, 23022-23030.	2.6	21
240	Structural Study of the Incorporation of Heavy Metals into Solid Phase Formed during the Oxidation of EDTA by Permanganate at High pH. Environmental Science & amp; Technology, 2007, 41, 2560-2565.	10.0	21
241	Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. ACS Applied Materials & amp; Interfaces, 2020, 12, 14721-14738.	8.0	21
242	Electrochemical and XAFS Studies of Effects of Carbonate on the Oxidation of Arsenite. Environmental Science & Technology, 2006, 40, 228-234.	10.0	20
243	Structural Analysis and Electrochemical Properties of Bimetallic Palladium–Platinum Aerogels Prepared by a Two‣tep Gelation Process. ChemCatChem, 2017, 9, 798-808.	3.7	20
244	Probing Active Sites in Cu _{<i>x</i>} Pd _{<i>y</i>} Cluster Catalysts by Machine-Learning-Assisted X-ray Absorption Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 53363-53374.	8.0	20
245	A Holistic Approach for Elucidating Local Structure, Dynamics, and Speciation in Molten Salts with High Structural Disorder. Journal of the American Chemical Society, 2021, 143, 15298-15308.	13.7	20
246	Single-nanometer iron oxide nanoparticles as tissue-permeable MRI contrast agents. Proceedings of the United States of America, 2021, 118, .	7.1	20
247	Local structure changes in V2O3 below and above the metal-insulator transition. Solid State Communications, 1997, 102, 637-641.	1.9	19
248	Synchrotron Studies of Catalysts: From XAFS to QEXAFS and Beyond. Synchrotron Radiation News, 2009, 22, 2-4.	0.8	19
249	X-ray spectroscopy for chemical and energy sciences: the case of heterogeneous catalysis. Journal of Synchrotron Radiation, 2014, 21, 1084-1089.	2.4	19
250	Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials. ACS Applied Materials & Interfaces, 2017, 9, 8030-8040.	8.0	19
251	Solving the structure of "single-atom―catalysts using machine learning – assisted XANES analysis. Physical Chemistry Chemical Physics, 2022, 24, 5116-5124. 	2.8	19
252	Anomalous Structural Disorder in Supported Pt Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 3284-3288.	4.6	18

#	Article	IF	CITATIONS
253	Deciphering the Local Environment of Single-Atom Catalysts with X-ray Absorption Spectroscopy. Accounts of Chemical Research, 2021, 54, 2660-2669.	15.6	18
254	Effect of Support on Oxygen Reduction Reaction Activity of Supported Iron Porphyrins. ACS Catalysis, 2022, 12, 1139-1149.	11.2	18
255	Redistribution of La-Al nearest-neighbor distances in the metallic glassAl0.91La0.09. Physical Review B, 1996, 54, 884-892.	3.2	17
256	In Situ Structural Characterization of Platinum Dendrimer-Encapsulated Oxygen Reduction Electrocatalysts. Langmuir, 2012, 28, 1596-1603.	3.5	17
257	Synthesis and Characterization of [Ir(1,5-Cyclooctadiene)(μ-H)] ₄ : A Tetrametallic Ir ₄ H ₄ -Core, Coordinatively Unsaturated Cluster. Inorganic Chemistry, 2012, 51, 3186-3193.	4.0	17
258	Effects of Adsorbate Coverage and Bond‣ength Disorder on the dâ€Band Center of Carbonâ€Supported Pt Catalysts. ChemPhysChem, 2014, 15, 1569-1572.	2.1	17
259	Anelastic and Electromechanical Properties of Doped and Reduced Ceria. Advanced Materials, 2018, 30, e1707455.	21.0	17
260	Silver clusters shape determination from in-situ XANES data. Radiation Physics and Chemistry, 2020, 175, 108049.	2.8	17
261	InAs Nanocrystals with Robust pâ€Type Doping. Advanced Functional Materials, 2021, 31, 2007456.	14.9	17
262	Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate. Physical Review Materials, 2018, 2, .	2.4	17
263	Structural and Valence State Modification of Cobalt in CoPt Nanocatalysts in Redox Conditions. ACS Nano, 2021, 15, 20619-20632.	14.6	17
264	X-ray study of the ferroelectric[Ba0.6Sr0.4][(YTa)0.03Ti0.94]O3. Physical Review B, 2006, 74, .	3.2	16
265	Characterization of Metal-Oxide Catalysts in Operando Conditions by Combining X-ray Absorption and Raman Spectroscopies in the Same Experiment. Topics in Catalysis, 2013, 56, 896-904.	2.8	16
266	Structural Characterization of Rh and RhAu Dendrimer-Encapsulated Nanoparticles. Langmuir, 2017, 33, 12434-12442.	3.5	16
267	Direct Identification of Mixed-Metal Centers in Metal–Organic Frameworks: Cu ₃ (BTC) ₂ Transmetalated with Rh ²⁺ Ions. Journal of Physical Chemistry Letters, 2020, 11, 8138-8144.	4.6	16
268	Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy and X-ray absorption fine structure spectroscopy. Canadian Journal of Soil Science, 2001, 81, 337-348.	1.2	15
269	Structural characterization of heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. Nanoscale, 2018, 10, 22520-22532.	5.6	15
270	Oxygen vacancy ordering and viscoelastic mechanical properties of doped ceria ceramics. Scripta Materialia, 2019, 163, 19-23.	5.2	15

#	Article	IF	CITATIONS
271	Photo–thermo Catalytic Oxidation over a TiO 2 â€WO 3 â€Supported Platinum Catalyst. Angewandte Chemie, 2020, 132, 13009-13016.	2.0	15
272	Effect of Carbon Doping on CO ₂ â€Reduction Activity of Single Cobalt Sites in Graphitic Carbon Nitride. ChemNanoMat, 2021, 7, 1051-1056.	2.8	15
273	Structural Stability of Giant Polyoxomolybdate Molecules as Probed by EXAFS. Physica Scripta, 2005, , 721.	2.5	15
274	Studies of Cu(II) in soil by X-ray absorption spectroscopy. Canadian Journal of Soil Science, 2001, 81, 271-276.	1.2	14
275	Compositional control of radionuclide retention in hollanditeâ€based ceramic waste forms for Csâ€immobilization. Journal of the American Ceramic Society, 2019, 102, 4314-4324.	3.8	14
276	Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites. Physical Review B, 2020, 101, .	3.2	14
277	Radiation-Assisted Formation of Metal Nanoparticles in Molten Salts. Journal of Physical Chemistry Letters, 2021, 12, 157-164.	4.6	14
278	Dynamical Change of Valence States and Structure in NiCu ₃ Nanoparticles during Redox Cycling. Journal of Physical Chemistry C, 2022, 126, 1991-2002.	3.1	14
279	Combined in situ X-ray absorption and diffuse reflectance infrared spectroscopy: An attractive tool for catalytic investigations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 204-206.	1.6	13
280	Allâ€Solidâ€State Electroâ€Chemoâ€Mechanical Actuator Operating at Room Temperature. Advanced Functional Materials, 2021, 31, 2006712.	14.9	13
281	Molecular Design of Supported MoO <i>_x</i> Catalysts with Surface TaO <i>_x</i> Promotion for Olefin Metathesis. ACS Catalysis, 2022, 12, 3226-3237.	11.2	13
282	EXAFS studies of the chemical state of lead and copper in corrosion products formed on the brass surface in potable water. Journal of Synchrotron Radiation, 1999, 6, 653-655.	2.4	12
283	A study of the coordination environment in aqueous cadmium–thiol complexes by EXAFS spectroscopy: experimentalvstheoretical standards. Journal of Synchrotron Radiation, 2001, 8, 669-671.	2.4	12
284	A Comparison of Atomistic and Continuum Approaches to the Study of Bonding Dynamics in Electrocatalysis: Microcantilever Stress and in Situ EXAFS Observations of Platinum Bond Expansion Due to Oxygen Adsorption during the Oxygen Reduction Reaction. Analytical Chemistry, 2014, 86, 8368-8375	6.5	12
285	New Role of Pd Hydride as a Sensor of Surface Pd Distributions in Pdâ [^] Au Catalysts. ChemCatChem, 2020, 12, 717-721.	3.7	12
286	Methanol to aromatics: isolated zinc phosphate groups on HZSM-5 zeolite enhance BTX selectivity and catalytic stability. RSC Advances, 2020, 10, 5961-5971.	3.6	12
287	Tuning the Number of Active Sites and Turnover Frequencies by Surface Modification of Supported ReO ₄ /(SiO ₂ –Al ₂ O ₃) Catalysts for Olefin Metathesis. ACS Catalysis, 2021, 11, 2412-2421.	11.2	12
288	Buckled crystalline structure of disordered mixed salts. Physica B: Condensed Matter, 1995, 208-209, 334-336.	2.7	11

#	Article	IF	CITATIONS
289	Log spiral of revolution highly oriented pyrolytic graphite monochromator for fluorescence x-ray absorption edge fine structure. Review of Scientific Instruments, 2000, 71, 3267-3273.	1.3	11
290	Study of the local structure and oxidation state of iron in complex oxide catalysts for propylene ammoxidation. Catalysis Science and Technology, 2014, 4, 2512-2519.	4.1	11
291	Observation of Ferroelectricity and Structure-Dependent Magnetic Behavior in Novel One-Dimensional Motifs of Pure, Crystalline Yttrium Manganese Oxides. Journal of Physical Chemistry C, 2014, 118, 21695-21705.	3.1	11
292	Growth of Nanoparticles with Desired Catalytic Functions by Controlled Doping-Segregation of Metal in Oxide. Chemistry of Materials, 2018, 30, 1585-1592.	6.7	11
293	Cluster Assemblies Produced by Aggregation of Preformed Ag Clusters in Ionic Liquids. Langmuir, 2018, 34, 4811-4819.	3.5	11
294	Electrochemical Activation of Li2MnO3 Electrodes at 0 °C and Its Impact on the Subsequent Performance at Higher Temperatures. Materials, 2020, 13, 4388.	2.9	11
295	Aliovalent Doping of CeO ₂ Improves the Stability of Atomically Dispersed Pt. ACS Applied Materials & Interfaces, 2021, 13, 52736-52742.	8.0	11
296	One-Step Facile Synthesis of High-Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst. ACS Applied Energy Materials, 2022, 5, 5245-5255.	5.1	11
297	Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604.	3.1	11
298	Structural disorder within computer-simulated crystalline clusters of alkali halides. Physical Review B, 1993, 48, 1283-1286.	3.2	10
299	DAFS analysis of magnetite. Journal of Synchrotron Radiation, 1999, 6, 332-334.	2.4	10
300	Geometry and Charge State of Mixed-Ligand Au13 Nanoclusters. AlP Conference Proceedings, 2007, , .	0.4	10
301	Illuminating surface atoms in nanoclusters by differential X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 26528-26538.	2.8	10
302	Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals. Angewandte Chemie, 2017, 129, 10471-10476.	2.0	10
303	Computationally Assisted STEM and EXAFS Characterization of Tunable Rh/Au and Rh/Ag Bimetallic Nanoparticle Catalysts. Microscopy and Microanalysis, 2017, 23, 2030-2031.	0.4	10
304	Local symmetry breaking in paramagnetic insulating(Al,V)2O3. Physical Review B, 2002, 66, .	3.2	9
305	Intracluster Atomic and Electronic Structural Heterogeneities in Supported Nanoscale Metal Catalysts. Journal of Physical Chemistry C, 2015, 119, 25615-25627.	3.1	9
306	Insight into restructuring of Pd-Au nanoparticles using EXAFS. Radiation Physics and Chemistry, 2020, 175, 108304.	2.8	9

#	Article	IF	CITATIONS
307	Synchrotron Catalysis Consortium (SCC) at NSLS-II: Dedicated Beamline Facilities for In Situ and Operando Characterization of Catalysts. Synchrotron Radiation News, 2020, 33, 4-9.	0.8	9
308	Remote controlled optical manipulation of bimetallic nanoparticle catalysts using peptides. Catalysis Science and Technology, 2021, 11, 2386-2395.	4.1	9
309	Time-dependent XAS studies of trapped enzyme-substrate complexes of alcohol dehydrogenase fromThermoanaerobacter brockii. Journal of Synchrotron Radiation, 2001, 8, 978-980.	2.4	8
310	Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro substitution. Chemical Physics, 2019, 518, 30-37.	1.9	8
311	Comparative analysis of XANES and EXAFS for local structural characterization of disordered metal oxides. Journal of Synchrotron Radiation, 2021, 28, 1511-1517.	2.4	8
312	Atomic resolution tracking of nerve-agent simulant decomposition and host metal–organic framework response in real space. Communications Chemistry, 2021, 4, .	4.5	8
313	In Situ XAFS, XRD, and DFT Characterization of the Sulfur Adsorption Sites on Cu and Ce Exchanged Y Zeolites. Journal of Physical Chemistry C, 2022, 126, 1496-1512.	3.1	8
314	X-ray induced persistent photoconductivity in Si-doped Al0.35Ga0.65As. Journal of Applied Physics, 2001, 90, 6172-6176.	2.5	7
315	Selective Catalytic Chemistry at Rhodium(II) Nodes in Bimetallic Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 16685-16689.	2.0	7
316	A solvent-free solid catalyst for the selective and color-indicating ambient-air removal of sulfur mustard. Communications Chemistry, 2021, 4, .	4.5	7
317	Local structure of Ge/Si nanostructures: Uniqueness of XAFS spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 174-178.	1.4	6
318	Investigation of periodically driven systems by x-ray absorption spectroscopy using asynchronous data collection mode. Review of Scientific Instruments, 2018, 89, 045111.	1.3	6
319	A comprehensive study of catalytic, morphological and electronic properties of ligand-protected gold nanoclusters using XPS, STM, XAFS, and TPD techniques. Physical Chemistry Chemical Physics, 2018, 20, 1497-1503.	2.8	6
320	Reconciling structure prediction of alloyed, ultrathin nanowires with spectroscopy. Chemical Science, 2021, 12, 7158-7173.	7.4	6
321	Nanoparticle Formation Kinetics, Mechanisms, and Accurate Rate Constants: Examination of a Second-Generation Ir(0)n Particle Formation System by Five Monitoring Methods Plus Initial Mechanism-Enabled Population Balance Modeling. Journal of Physical Chemistry C, 2021, 125, 13449-13476.	3.1	6
322	Rationalization of promoted reverse water gas shift reaction by Pt3Ni alloy: Essential contribution from ensemble effect. Journal of Chemical Physics, 2021, 154, 014702.	3.0	6
323	Influence of strain on the atomic and electronic structure of manganite films. Journal of Physics and Chemistry of Solids, 2007, 68, 458-463.	4.0	5
324	Using combined XAS/DRIFTS to study CO/NO Oxidation over Pt/Al ₂ O ₃ catalysts. Journal of Physics: Conference Series, 2016, 712, 012045.	0.4	5

#	Article	IF	CITATIONS
343	Atomically Resolved Characterization of Optically Driven Ligand Reconfiguration on Nanoparticle Catalyst Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 44302-44311.	8.0	3
344	Z-Contrast Enhancement in Au–Pt Nanocatalysts by Correlative X-ray Absorption Spectroscopy and Electron Microscopy: Implications for Composition Determination. ACS Applied Nano Materials, 2022, 5, 8775-8782.	5.0	3
345	Electrical and structural properties of binary Ga–Sb phase change memory alloys. Journal of Applied Physics, 2022, 132, .	2.5	3
346	X-ray excitation of DX centers in Si-doped Al0.35Ga0.65As. Surface Science, 2000, 451, 214-218.	1.9	2
347	Local disorder in mixed crystals as viewed by XRPD. AIP Conference Proceedings, 2001, , .	0.4	2
348	Structural Changes of Bimetallic PdX/Cu (1-X) Nanocatalysts Developed for Nitrate Reduction of Drinking Water. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	2
349	Application of glancing-emergent-angle fluorescence for polarized XAFS studies of single crystals. Journal of Synchrotron Radiation, 2007, 14, 272-275.	2.4	2
350	Ultra-small and Monodisperse Pt Nanoparticles Supported on Gamma-Al2O3. Microscopy and Microanalysis, 2010, 16, 1192-1193.	0.4	2
351	(Invited) How to Dope a Semiconductor Nanocrystal. ECS Transactions, 2013, 58, 127-133.	0.5	2
352	Characterizing Working Catalysts with Correlated Electron and Photon Probes. Microscopy and Microanalysis, 2015, 21, 563-564.	0.4	2
353	Two views at strained nanocrystals from the opposite sides of spatial resolution limit. Physica Scripta, 2015, 90, 098004.	2.5	2
354	Synchrotron Radiation and Neutrons for Catalysis, Materials Research and Development. Synchrotron Radiation News, 2018, 31, 56-58.	0.8	2
355	Choosing the metal oxide for an electro-chemo-mechanical actuator working body. Solid State Ionics, 2022, 379, 115913.	2.7	2
356	Comparative radial distribution analysis of the short range order in metallic glass Al0.91La0.09 and crystalline Al11La3. Physica B: Condensed Matter, 1995, 208-209, 398-400.	2.7	1
357	Optimization of monochromator crystal bending designs using computer simulations. Review of Scientific Instruments, 1996, 67, 3355-3355.	1.3	1
358	Extension of a tuned log spiral of revolution fluorescence XAFS detector, designed for optimal detection of a particular element Z, to XAFS of elements other than Z. Journal of Synchrotron Radiation, 2001, 8, 336-338.	2.4	1
359	NSLS 2001 annual users' meeting workshops: Advanced methods and tricks of EXAFS data modeling. Synchrotron Radiation News, 2001, 14, 11-11.	0.8	1
360	Outlook of Application of Aberration Corrected-Electron Microscopy in the Ligandprotected Metal Clusters. Microscopy and Microanalysis, 2004, 10, 62-63.	0.4	1

#	Article	IF	CITATIONS
361	The Effect of Substrates / Ligands on Metal Nanocatalysts Investigated By Quantitative Z-Contrast Imaging and High Resolution Electron Microscopy. Materials Research Society Symposia Proceedings, 2005, 876, 1.	0.1	1
362	Structural Characterization of Supported Metal Nanoparticles. Microscopy and Microanalysis, 2006, 12, 782-783.	0.4	1
363	Nanometer-scale mechanism of phase-change optical recording as revealed by XAFS. Nuclear Instruments & Methods in Physics Research B, 2006, 246, 69-74.	1.4	1
364	EXAFS Studies of Palladium Nanoparticles: Size Control and Hydrogenation. AIP Conference Proceedings, 2007, , .	0.4	1
365	Synthesis and characterization of platinum nanoparticles on single-walled Carbon nanotube "nanopaper" support. Journal of Physics: Conference Series, 2009, 190, 012155.	0.4	1
366	Synchrotron Consortia for Catalysis and Electrocatalysis Research. Synchrotron Radiation News, 2020, 33, 2-3.	0.8	1
367	Defense Synchrotron Consortium (DSC) at Brookhaven National Laboratory. Synchrotron Radiation News, 2020, 33, 29-34.	0.8	1
368	Machine-Learning Assisted Structure Determination of Metallic Nanoparticles: A Benchmark. , 2020, , 127-140.		1
369	Noncontact optical displacement measurements by dynamic contrast auto focusing for slow oscillatory motion. Optical Engineering, 2021, 60, .	1.0	1
370	Parity nonconserving current in conductors of electricity. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 124, 117-119.	2.1	0
371	Metal-Insulator Transition and Local Structure of V ₂ O ₃ . European Physical Journal Special Topics, 1997, 7, C2-1061-C2-1063.	0.2	Ο
372	EXAFS AND XANES STUDIES OF EFFECTS OF $_{\rm P}{\rm H}$ ON COMPLEXATION OF COPPER BY HUMIC SUBSTANCES. , 2000, , 227-233.		0
373	Electrosynthesis of ReS4. XAS Analysis of ReS2, Re2S7 and ReS4 ChemInform, 2004, 35, no.	0.0	Ο
374	3-Dimensional Structural Characterization Approaches of Carbon-Supported Au13 Nano-Clusters. Microscopy and Microanalysis, 2004, 10, 454-455.	0.4	0
375	Structural Characterization of Supported Metal Nanoparticles. Microscopy and Microanalysis, 2005, 11, .	0.4	Ο
376	Quantitative Study of Au Catalytic Nanoparticles by Stem and Hrtem. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
377	Publisher's Note: Microscopic origin of polarity in quasiamorphousBaTiO3[Phys. Rev. B71, 024116 (2005)]. Physical Review B, 2005, 71,	3.2	0
378	Laser-induced Ge Atom Switching as aKey to Understanding Phase-change Optical Media. , 0, , .		0

Laser-induced Ge Atom Switching as aKey to Understanding Phase-change Optical Media. , 0, , . 378

#	Article	IF	CITATIONS
379	Performance and Improved Design of the Log Spiral of Revolution Monochromator. AIP Conference Proceedings, 2007, , .	0.4	0
380	Microstructural Characterization of Colloid-Derived Bimetallic Pd-Cu Nanocatalysts Supported on γ-Al2O3 for Nitrate Reduction. Microscopy and Microanalysis, 2008, 14, 186-187.	0.4	0
381	X-ray Absorption Spectroscopy Studies of Model Catalysts. Synchrotron Radiation News, 2009, 22, 6-11.	0.8	0
382	Formation and Characterization of γ- Al2O3 Films Produced by Oxidation of β–NiAl(110). Microscopy and Microanalysis, 2009, 15, 1440-1441.	0.4	0
383	Preparation and Characterization of Pt/Î ³ -Al2O3 Model Catalyst on NiAl Alloy. Microscopy and Microanalysis, 2010, 16, 1464-1465.	0.4	0
384	The Role of \hat{I}^3 -Al2O3 Single Crystal Support to Pt Nanoparticles Construction. Microscopy and Microanalysis, 2011, 17, 1324-1325.	0.4	0
385	H2-Driven Crystallization of Supported Pt Nanoparticles Observed with Aberration-Corrected Environmental TEM. Microscopy and Microanalysis, 2011, 17, 1604-1605.	0.4	0
386	Developments in environmental transmission electron microscopy for catalysis research. Microscopy and Microanalysis, 2013, 19, 1174-1175.	0.4	0
387	Using Operando Methods to Characterize Working Catalysts with TEM, XAS, EXAFS and Raman Spectroscopy. Microscopy and Microanalysis, 2013, 19, 1674-1675.	0.4	0
388	Thermal properties of size-selective nanoparticles: Effect of the particle size on Einstein temperature. Journal of Physics: Conference Series, 2016, 712, 012063.	0.4	0
389	Insight into the local environment of nickel in VSB-1 before and after calcination. Microporous and Mesoporous Materials, 2016, 223, 157-162.	4.4	0
390	Operando and multimodal studies of speciation and activity of Pt catalysts during the hydrogenation of ethylene. Microscopy and Microanalysis, 2017, 23, 892-893.	0.4	0
391	Nanoparticle Doping: Doping of Fullereneâ€Like MoS ₂ Nanoparticles with Minute Amounts of Niobium (Part. Part. Syst. Charact. 3/2018). Particle and Particle Systems Characterization, 2018, 35, 1870009.	2.3	0
392	Ethylene Dehydroaromatization over Gaâ€ZSMâ€5 Catalysts: Nature and Role of Gallium Speciation. Angewandte Chemie, 2020, 132, 19760-19769.	2.0	0
393	Using in situ electron energy-loss spectroscopy (EELS) and X-ray fluorescence microscopy (XFM) to characterize Co-Pt nanoparticles. Microscopy and Microanalysis, 2021, 27, 2108-2109.	0.4	0
394	Exploiting Microreactors for Correlative Studies of Working Catalysts With Electrons And X-Rays. Microscopy and Microanalysis, 2021, 27, 148-149.	0.4	0
395	Nanoscale Atomic Clusters, Complexity of. , 2013, , 1-32.		0
396	<i>In operando</i> studies of Zr-based MOFs as nerve-agent filtration materials. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a252-a252.	0.1	0

#	Article	IF	CITATIONS
397	<i>In situ</i> X-ray Absorption Spectroscopy Characterization of Copper Valence State in Cu-Zn/SiO ₂ Catalyst. Acta Chimica Sinica, 2018, 76, 639.	1.4	0