R. Paul Drake

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5005611/publications.pdf

Version: 2024-02-01

252 papers

7,537 citations

57758 44 h-index 78 g-index

255 all docs

255 docs citations

255 times ranked 3128 citing authors

#	Article	IF	CITATIONS
1	The design of a photoionization front experiment using the Z-Machine as a driving source and estimated measurements. Physics of Plasmas, 2021, 28, .	1.9	2
2	Using simultaneous x-ray diffraction and velocity interferometry to determine material strength in shock-compressed diamond. Applied Physics Letters, 2020, 116 , .	3.3	10
3	Electron acceleration in laboratory-produced turbulent collisionless shocks. Nature Physics, 2020, 16, 916-920.	16.7	60
4	Implementation of a Talbot–Lau x-ray deflectometer diagnostic platform for the OMEGA EP laser. Review of Scientific Instruments, 2020, 91, 023511.	1.3	12
5	Atomic modeling of photoionization fronts in nitrogen gas. Physics of Plasmas, 2019, 26, 052901.	1.9	3
6	Design and Scaling of an Omega-EP Experiment to Study Cold Streams Feeding Early Galaxies. Astrophysical Journal, Supplement Series, 2019, 245, 27.	7.7	0
7	How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nature Communications, 2018, 9, 1564.	12.8	84
8	Regimes of the Vishniac–Ryu Decelerating Shock Instability. Astrophysical Journal, 2018, 868, 23.	4.5	4
9	Construction and validation of a statistical model for the nonlinear Kelvin-Helmholtz instability under compressible, multimode conditions. Physics of Plasmas, 2018, 25, 122112.	1.9	2
10	Development of a backlit-multi-pinhole radiography source. Review of Scientific Instruments, 2018, 89, 10G110.	1.3	0
11	Experimental considerations to observe two ionizing fronts in systems with a sharp absorption edge. Review of Scientific Instruments, 2018, 89, 10G104.	1.3	1
12	Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study. Astrophysical Journal, 2018, 858, 22.	4.5	3
13	Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. Physics of Plasmas, 2018, 25, .	1.9	18
14	Soft X-ray emission from laser-irradiated gold foils. Physics of Plasmas, 2018, 25, .	1.9	8
15	Enhanced accuracy of x-ray spectra reconstruction from filtered diode array measurements by adding a time integrated spectrometer. Review of Scientific Instruments, 2017, 88, 043507.	1.3	6
16	Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas. Physics of Plasmas, 2017, 24, .	1.9	14
17	Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow. Physics of Plasmas, 2017, 24, .	1.9	18
18	Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence. Journal of Applied Physics, 2016, 120, 125901.	2.5	5

#	Article	IF	CITATIONS
19	Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS. Review of Scientific Instruments, 2016, 87, 11E709.	1.3	4
20	Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials. Journal of Applied Physics, 2016, 119 , .	2.5	13
21	Measurements of laser generated soft X-ray emission from irradiated gold foils. Review of Scientific Instruments, 2016, 87, 11D609.	1.3	7
22	Detailed characterization of the LLNL imaging proton spectrometer. Review of Scientific Instruments, 2016, 87, 11D831.	1.3	1
23	DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES. Astrophysical Journal, 2016, 833, 249.	4.5	8
24	Mitigation of hard x-ray background in backlit pinhole imagers. Review of Scientific Instruments, 2016, 87, 11E341.	1.3	3
25	Laboratory analogue of a supersonic accretion column in a binary star system. Nature Communications, 2016, 7, ncomms11899.	12.8	15
26	Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering. Applied Physics Letters, 2016, 109, 031108.	3.3	11
27	Spectral measurements of asymmetrically irradiated capsule backlighters. Review of Scientific Instruments, 2016, 87, 11E338.	1.3	2
28	Energetic electrons driven in the polarization direction of an intense laser beam incident normal to a solid target. High Energy Density Physics, 2016, 19, 23-28.	1.5	1
29	Demonstration of imaging X-ray Thomson scattering on OMEGA EP. Review of Scientific Instruments, 2016, 87, 11E550.	1.3	1
30	Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Density Physics, 2015, 17, 263-269.	1.5	23
31	Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow. Physical Review Letters, 2015, 115, 145001.	7.8	32
32	Measurements of the energy spectrum of electrons emanating from solid materials irradiated by a picosecond laser. Physics of Plasmas, 2015, 22, .	1.9	1
33	Collisionless shock experiments with lasers and observation of Weibel instabilities. Physics of Plasmas, 2015, 22, .	1.9	51
34	Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nature Physics, 2015, 11, 173-176.	16.7	236
35	Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8211-8215.	7.1	52
36	Richtmyer-Meshkov evolution under steady shock conditions in the high-energy-density regime. Applied Physics Letters, 2015, 106, .	3.3	30

#	Article	IF	Citations
37	Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility. High Energy Density Physics, 2015, 17, 52-62.	1.5	19
38	Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy. Review of Scientific Instruments, 2014, 85, 11D618.	1.3	6
39	Rotating plasma disks in dense Z-pinch experiments. , 2014, , .		2
40	Demonstration of x-ray fluorescence imaging of a high-energy-density plasma. Review of Scientific Instruments, 2014, 85, 11E602.	1.3	6
41	Focus on high energy density physics. New Journal of Physics, 2014, 16, 065007.	2.9	4
42	Design of a supernova-relevant Rayleighâ€"Taylor experiment on the National Ignition Facility. I. Planar target design and diagnostics. High Energy Density Physics, 2014, 12, 35-45.	1.5	7
43	Prospects of turbulence studies in high-energy density laser-generated plasma: Numerical investigations in two dimensions. High Energy Density Physics, 2014, 11, 1-11.	1.5	1
44	Turbulent amplification of magnetic fields in laboratory laser-produced shock waves. Nature Physics, 2014, 10, 520-524.	16.7	84
45	Spatially-resolved X-ray scattering measurements of a planar blast wave. High Energy Density Physics, 2014, 11, 75-79.	1.5	9
46	A design of a two-dimensional, supersonic KH experiment on OMEGA-EP. High Energy Density Physics, 2013, 9, 672-686.	1.5	20
47	What is certain and what is not so certain in our knowledge of Rayleigh–Taylor mixing?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130266.	3.4	50
48	Structure and Dynamics of Colliding Plasma Jets. Physical Review Letters, 2013, 111, 235003.	7.8	35
49	Spline-Based Emulators for Radiative Shock Experiments With Measurement Error. Journal of the American Statistical Association, 2013, 108, 411-428.	3.1	15
50	Comparison between Kelvin–Helmholtz instability experiments on OMEGA and simulation results using the CRASH code. High Energy Density Physics, 2013, 9, 148-151.	1.5	4
51	Modeling HEDLA magnetic field generation experiments on laser facilities. High Energy Density Physics, 2013, 9, 172-177.	1.5	16
52	Simulation of laser-driven, ablated plasma flows in collisionless shock experiments on OMEGA and the NIF. High Energy Density Physics, 2013, 9, 192-197.	1.5	5
53	Simulating radiative shocks with the CRASH laser package. High Energy Density Physics, 2013, 9, 8-16.	1.5	13
54	The production and evolution of multiple converging radiative shock waves in gas-filled cylindrical liner z-pinch experiments. High Energy Density Physics, 2013, 9, 52-62.	1.5	18

#	Article	IF	Citations
55	A design of a two-dimensional, multimode RM experiment on OMEGA-EP. High Energy Density Physics, 2013, 9, 122-131.	1.5	19
56	Simulations of radiative effects on the Rayleigh–Taylor instability using the CRASH code. High Energy Density Physics, 2013, 9, 303-308.	1.5	4
57	Early-time evolution of a radiative shock. High Energy Density Physics, 2013, 9, 315-318.	1.5	4
58	Hybrid Vlasov–Fokker–Planck–Maxwell simulations of fast electron transport and the time dependance of <i>K</i> -shell excitation in a mid- <i>Z</i> metallic target. New Journal of Physics, 2013, 15, 015017.	2.9	10
59	Modeling of aspheric, diverging hydrodynamic instability experiments on the National Ignition Facility. High Energy Density Physics, 2013, 9, 439-447.	1.5	10
60	Measurements of turbulent mixing due to Kelvin–Helmholtz instability inÂhigh-energy-density plasmas. High Energy Density Physics, 2013, 9, 47-51.	1.5	17
61	Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics. Physics of Plasmas, 2013, 20, .	1.9	36
62	Experimental observations of turbulent mixing due to Kelvin–Helmholtz instability on the OMEGA Laser Facility. Physics of Plasmas, 2012, 19, .	1.9	26
63	Three-dimensional modeling and analysis of a high energy density Kelvin-Helmholtz experiment. Physics of Plasmas, 2012, 19, .	1.9	18
64	An evaluation of high energy bremsstrahlung background in point-projection x-ray radiography experiments. Review of Scientific Instruments, 2012, 83, 10E528.	1.3	12
65	of Scientific Instruments, 2012, 83, 10E114.	1.3	11
66	Measurement of Radiative Shock Properties by X-Ray Thomson Scattering. Physical Review Letters, 2012, 108, 145001.	7.8	34
67	Validation of a Turbulent Kelvin-Helmholtz Shear Layer Model Using a High-Energy-Density OMEGA Laser Experiment. Physical Review Letters, 2012, 109, 155004.	7.8	39
68	Magnetic field generation by Biermann battery and Weibel instability in laboratory shock waves. EAS Publications Series, 2012, 58, 23-26.	0.3	1
69	Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. Nature, 2012, 481, 480-483.	27.8	113
70	DESIGN CONSIDERATIONS FOR UNMAGNETIZED COLLISIONLESS-SHOCK MEASUREMENTS IN HOMOLOGOUS FLOWS. Astrophysical Journal, 2012, 749, 171.	4.5	38
71	Rayleigh–Taylor instability simulations with CRASH. High Energy Density Physics, 2012, 8, 71-75.	1.5	5
72	Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers. High Energy Density Physics, 2012, 8, 38-45.	1.5	82

#	Article	IF	CITATIONS
7 3	Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas. Nature Physics, 2012, 8, 809-812.	16.7	118
74	Feasibility study of the standing accretion shock instability experiment at the National Ignition Facility. High Energy Density Physics, 2012, 8, 331-340.	1.5	1
75	Late-time breakup of laser-driven hydrodynamics experiments. High Energy Density Physics, 2012, 8, 360-365.	1.5	4
76	Simulating radiative shocks in nozzle shock tubes. High Energy Density Physics, 2012, 8, 161-169.	1.5	13
77	The impact of recent advances in laboratory astrophysics on our understanding of the cosmos. Reports on Progress in Physics, 2012, 75, 036901.	20.1	51
78	SPIKE PENETRATION IN BLAST-WAVE-DRIVEN INSTABILITIES. Astrophysical Journal, 2012, 744, 184.	4.5	11
79	CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS—IMPLEMENTATION AND VERIFICATION. Astrophysical Journal, Supplement Series, 2011, 194, 23.	7.7	91
80	Design of experiments to observe radiation stabilized Rayleigh-Taylor instability growth at an embedded decelerating interface. Physics of Plasmas, $2011,18,.$	1.9	10
81	Statistical inference in the presence of an inclination effect in laboratory radiative shock experiments. Astrophysics and Space Science, 2011, 336, 219-224.	1.4	7
82	Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility. Astrophysics and Space Science, 2011, 336, 207-211.	1.4	19
83	Radiative effects in radiative shocks in shock tubes. High Energy Density Physics, 2011, 7, 130-140.	1.5	38
84	A physics informed emulator for laser-driven radiating shock simulations. Reliability Engineering and System Safety, 2011, 96, 1194-1207.	8.9	14
85	Current Filamentation Instability in Laser Wakefield Accelerators. Physical Review Letters, 2011, 106, 105001.	7.8	37
86	Isothermal, mass-limited rarefactions in planar and spherical geometry. Physics of Plasmas, 2011, 18, .	1.9	6
87	Repeatability in radiative shock tube experiments. High Energy Density Physics, 2010, 6, 157-161.	1.5	24
88	Simulation of fabrication variations in supernova hydrodynamics experiments. High Energy Density Physics, 2010, 6, 135-142.	1.5	1
89	Anti-diffusive radiation flow in the cooling layer of a radiating shock. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2095-2105.	2.3	11
90	Using wall shocks to measure preheat in laser-irradiated, high-energy-density, hydrodynamics experiments. High Energy Density Physics, 2010, 6, 215-218.	1.5	8

#	Article	IF	CITATIONS
91	The possible effects of magnetic fields on laser experiments of Rayleigh–Taylor instabilities. High Energy Density Physics, 2010, 6, 162-165.	1.5	22
92	Imaging scattered x-ray radiation for measurement of local electron density in high-energy-density experiments. High Energy Density Physics, 2010, 6, 194-199.	1.5	7
93	Experimental design to generate strong shear layers in a high-energy-density plasma. High Energy Density Physics, 2010, 6, 179-184.	1.5	4
94	Development of a short duration backlit pinhole for radiography on the National Ignition Facility. Review of Scientific Instruments, 2010, 81, 10E536.	1.3	20
95	Theory of radiative shocks in the mixed, optically thick-thin case. Physics of Plasmas, 2010, 17, .	1.9	30
96	Laser driven supersonic flow over a compressible foam surface on the Nike laser. Physics of Plasmas, 2010, 17, 056310.	1.9	7
97	Wall shocks in high-energy-density shock tube experiments. Physics of Plasmas, 2009, 16, 112705.	1.9	38
98	Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser. Physical Review Letters, 2009, 103, 045005.	7.8	86
99	Stellar explosions, instabilities, and turbulence. Physics of Plasmas, 2009, 16, 041004.	1.9	12
100	TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION. Astrophysical Journal, 2009, 696, 749-759.	4.5	61
101	Perspectives on high-energy-density physics. Physics of Plasmas, 2009, 16, .	1.9	105
102	Design of jet-driven, radiative-blast-wave experiments for 10ÂkJ class lasers. Astrophysics and Space Science, 2009, 322, 97-100.	1.4	0
103	Modeling of multi-interface, diverging, hydrodynamic experiments for the National Ignition Facility. Astrophysics and Space Science, 2009, 322, 57-63.	1.4	6
104	Classification of and recent research involving radiative shocks. Astrophysics and Space Science, 2009, 322, 77-84.	1.4	38
105	Image processing of radiographs in 3D Rayleigh-Taylor decelerating interface experiments. Astrophysics and Space Science, 2009, 322, 49-55.	1.4	5
106	How to see a black hole. Nature Physics, 2009, 5, 786-787.	16.7	7
107	Approaches to turbulence in high-energy-density experiments. Physica Scripta, 2008, T132, 014022.	2.5	5
108	Performance of Au transmission photocathode on a microchannel plate detector. Review of Scientific Instruments, 2008, 79, 10E912.	1.3	2

#	Article	IF	Citations
109	Temporal dispersion of a spectrometer. Review of Scientific Instruments, 2008, 79, 10F545.	1.3	31
110	Energy Balance and Structural Regimes of Radiative Shocks in Optically Thick Media. IEEE Transactions on Plasma Science, 2007, 35, 171-180.	1.3	12
111	Numerical evaluation of the impact of laser preheat on interface structure and instability. Physics of Plasmas, 2007, 14, 062703.	1.9	7
112	Theory of radiative shocks in optically thick media. Physics of Plasmas, 2007, 14, 043301.	1.9	59
113	Flash Code Simulations of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Driven Experiments. Astrophysics and Space Science, 2007, 307, 227-231.	1.4	5
114	Assessing Mix Layer Amplitude in 3D Decelerating Interface Experiments. Astrophysics and Space Science, 2007, 307, 115-119.	1.4	12
115	Experimental astrophysics with high power lasers and Zpinches. Reviews of Modern Physics, 2006, 78, 755-807.	45.6	640
116	Three-dimensional model of x-ray induced microchannel plate output. Review of Scientific Instruments, 2006, 77, 10E312.	1.3	5
117	Observation of collapsing radiative shocks in laboratory experiments. Physics of Plasmas, 2006, 13, 082901.	1.9	85
118	Dual, orthogonal, backlit pinhole radiography in OMEGA experiments. Review of Scientific Instruments, 2006, 77, 10E327.	1.3	37
119	Descriptions of Fluids and Plasmas. , 2006, , 19-53.		0
120	Radiation Hydrodynamics. , 2006, , 267-334.		3
121	Creating High-Energy-Density Conditions. , 2006, , 335-390.		36
122	Laboratory-astrophysics jet experiments at the omegaÂlaserÂfacility. European Physical Journal Special Topics, 2006, 133, 1019-1023.	0.2	2
123	A Validation Test of the Fluxâ€limited Diffusion Approximation for Radiation Hydrodynamics. Astrophysical Journal, 2005, 626, 616-625.	4.5	7
124	Radiation-coupled front-tracking simulations for laser-driven shock experiments. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, e1635-e1644.	1.1	2
125	Progress Toward the Study of Laboratory Scale, Astrophysically Relevant, Turbulent Plasmas. Astrophysics and Space Science, 2005, 298, 9-16.	1.4	16
126	Radiative Shocks in Astrophysics and the Laboratory. Astrophysics and Space Science, 2005, 298, 49-59.	1.4	46

#	Article	IF	CITATIONS
127	Recent Experimental Results and Modelling of High-Mach-Number Jets and the Transition to Turbulence. Astrophysics and Space Science, 2005, 298, 121-128.	1.4	8
128	Preheat Issues in Hydrodynamic Hedla Experiments. Astrophysics and Space Science, 2005, 298, 267-271.	1.4	7
129	Zeus-2D Simulations of Laser-Driven Radiative Shock Experiments. Astrophysics and Space Science, 2005, 298, 273-276.	1.4	5
130	Transition to turbulence and effect of initial conditions on three-dimensional compressible mixing in planar blast-wave-driven systems. Physics of Plasmas, 2005, 12, 056317.	1.9	34
131	Hydrodynamic instabilities in astrophysics and in laboratory high-energy–density systems. Plasma Physics and Controlled Fusion, 2005, 47, B419-B440.	2.1	28
132	Mini-conference and related sessions on laboratory plasma astrophysics. Physics of Plasmas, 2004, 11, 2976-2983.	1.9	3
133	The effect of a short-wavelength mode on the evolution of a long-wavelength perturbation driven by a strong blast wave. Physics of Plasmas, 2004, 11, 5507-5519.	1.9	33
134	Nonlinear mixing behavior of the three-dimensional Rayleighâ€"Taylor instability at a decelerating interface. Physics of Plasmas, 2004, 11, 2829-2837.	1.9	46
135	A Laboratory Investigation of Supersonic Clumpy Flows: Experimental Design and Theoretical Analysis. Astrophysical Journal, 2004, 604, 213-221.	4.5	21
136	Plasma heating via parametric beating of Alfv $\tilde{\mathbb{A}}$ \mathbb{O} n waves, with heliospheric applications. Physics of Plasmas, 2003, 10, 4800-4810.	1.9	3
137	The time scale for the transition to turbulence in a high Reynolds number, accelerated flow. Physics of Plasmas, 2003, 10, 614-622.	1.9	113
138	Rayleigh–Taylor growth at decelerating interfaces. Physics of Plasmas, 2002, 9, 382-384.	1.9	8
139	Ion plasma waves induced by frustrated Debye shielding. Physics of Plasmas, 2002, 9, 267-274.	1.9	6
140	On Validating an Astrophysical Simulation Code. Astrophysical Journal, Supplement Series, 2002, 143, 201-229.	7.7	176
141	Comment on "Collisionless shock and supernova remnant simulations on VULCAN―[Phys. Plasmas8, 2439 (2001)]. Physics of Plasmas, 2002, 9, 727-728.	1.9	14
142	Experiments to Produce a Hydrodynamically Unstable, Spherically Diverging System of Relevance to Instabilities in Supernovae. Astrophysical Journal, 2002, 564, 896-908.	4.5	55
143	Design of flyer-plate-driven compressible turbulent mix experiments using Z. Physics of Plasmas, 2002, 9, 3545-3551.	1.9	8
144	Magnetohydrodynamic scaling: From astrophysics to the laboratory. Physics of Plasmas, 2001, 8, 1804-1816.	1.9	178

#	Article	IF	Citations
145	Late-time hohlraum pressure dynamics in supernova remnant experiments. Physics of Plasmas, 2001, 8, 2609-2612.	1.9	11
146	Alternative Mechanism forï‰0/2Emission in Laser-Produced Plasmas. Physical Review Letters, 2001, 86, 3787-3790.	7.8	2
147	Supernova Experiments on the Nova Laser. Astrophysical Journal, Supplement Series, 2000, 127, 365-369.	7.7	17
148	Progress toward the Laboratory Simulation of Young Supernova Remnants. Astrophysical Journal, Supplement Series, 2000, 127, 305-310.	7.7	11
149	Laser-induced fluorescence characterization of ions emitted from hollow cathodes. IEEE Transactions on Plasma Science, 2000, 28, 1664-1675.	1.3	41
150	Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena. Astrophysical Journal, Supplement Series, 2000, 127, 465-468.	7.7	184
151	The design of laboratory experiments to produce collisionless shocks of cosmic relevance. Physics of Plasmas, 2000, 7, 4690-4698.	1.9	81
152	Laser experiments to simulate supernova remnants. Physics of Plasmas, 2000, 7, 2142-2148.	1.9	18
153	A review of astrophysics experiments on intense lasers. Physics of Plasmas, 2000, 7, 1641-1652.	1.9	188
154	INTRODUCTION: Second International Workshop on Laboratory Astrophysics with Intense Lasers. Astrophysical Journal, Supplement Series, 2000, 127, 211-211.	7.7	5
155	Experimental Measurements of Hydrodynamic Instabilities on Nova of Relevance to Astrophysics. Astrophysical Journal, Supplement Series, 2000, 127, 325-331.	7.7	1
156	An Evaluation of the Richtmyerâ€Meshkov Instability in Supernova Remnant Formation. Astrophysical Journal, 1999, 511, 335-340.	4.5	70
157	Measurement of the frequency and spectral width of the Langmuir wave spectrum driven by stimulated Raman scattering. Physics of Plasmas, 1999, 6, 4284-4292.	1.9	5
158	Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers. Science, 1999, 284, 1488-1493.	12.6	369
159	Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Physics of Plasmas, 1999, 6, 2072-2080.	1.9	123
160	Laboratory experiments to simulate the hydrodynamics of supernova remnants and supernovae. Journal of Geophysical Research, 1999, 104, 14505-14515.	3.3	44
161	Observation of Forward Shocks and Stagnated Ejecta Driven by High-Energy-Density Plasma Flow. Physical Review Letters, 1998, 81, 2068-2071.	7.8	31
162	Role of Coincidental Nonlinear Events in the Saturation of Moderately Damped Modes. Physical Review Letters, 1998, 80, 2499-2503.	7.8	1

#	Article	IF	Citations
163	Supernova hydrodynamics experiments on Nova. , 1998, , .		1
164	Development of a Laboratory Environment to Test Modelsof Supernova Remnant Formation. Astrophysical Journal, 1998, 500, L157-L161.	4.5	34
165	Greatly enhanced acoustic noise and the onset of stimulated Brillouin scattering. Physics of Plasmas, 1997, 4, 1825-1831.	1.9	3
166	Observation of the Langmuir decay instability driven by stimulated Raman scattering. Physics of Plasmas, 1997, 4, 3012-3020.	1.9	10
167	Supernova hydrodynamics experiments on the Nova laser. Physics of Plasmas, 1997, 4, 1994-2003.	1.9	121
168	Theory of convective saturation of Langmuir waves during ionospheric modification of a barium cloud. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 2335-2350.	1.6	3
169	Dependence of stimulated Brillouin scattering on focusing opticFnumber in long scaleâ€length plasmas. Physics of Plasmas, 1996, 3, 1091-1095.	1.9	20
170	Onset and Saturation of the Spectral Intensity of Stimulated Brillouin Scattering in Inhomogeneous Laser-Produced Plasmas. Physical Review Letters, 1996, 77, 79-82.	7.8	13
171	Thomson Scattering Measurements of the Langmuir Wave Spectra Resulting from Stimulated Raman Scattering. Physical Review Letters, 1996, 77, 67-70.	7.8	31
172	Measurements of the angular and temporal structure of secondâ€harmonic emission from laserâ€produced plasmas. Physics of Plasmas, 1995, 2, 3473-3483.	1.9	5
173	Characterization of titanium laserâ€produced plasmas. Physics of Plasmas, 1995, 2, 3792-3803.	1.9	6
174	Detection of Ion Plasma Waves by Collective Thomson Scattering. Physical Review Letters, 1995, 74, 3604-3607.	7.8	26
175	Multiangle, Time-Resolved Spectroscopy of Laser-Light Scattering in Underdense, Inhomogeneous Laser Plasmas. Physical Review Letters, 1995, 74, 3157-3160.	7.8	7
176	Meeting the challenge of detecting ion plasma waves. Physics of Plasmas, 1995, 2, 2207-2215.	1.9	4
177	Thomson scattering measurements of ionâ€acoustic waves driven by ionâ€acoustic decay instabilities. Physics of Plasmas, 1995, 2, 1364-1366.	1.9	1
178	Collisional regimes of radiationâ€driven Langmuir turbulence. Physics of Plasmas, 1995, 2, 1947-1960.	1.9	8
179	The frequency and damping of ion acoustic waves in hydrocarbon (CH) and twoâ€ionâ€species plasmas. Physics of Plasmas, 1995, 2, 129-138.	1.9	136
180	Direct Measurements of the Ion Acoustic Decay Instability in a Laser-Produced, Large-Scale, Hot Plasma. Physical Review Letters, 1994, 73, 2704-2707.	7.8	6

#	Article	IF	CITATIONS
181	Electron heat transport with nonâ€Maxwellian distributions. Physics of Plasmas, 1994, 1, 3570-3576.	1.9	17
182	Linear rayâ€optics theory of the radiationâ€driven ionâ€acoustic decay instability in flowing, inhomogeneous plasmas. Physics of Plasmas, 1994, 1, 2448-2459.	1.9	5
183	Measurements of Radial Heat Wave Propagation in Laser-Produced Exploding-Foil Plasmas. Physical Review Letters, 1994, 73, 2055-2058.	7.8	36
184	Intensity scaling and saturation of stimulated Raman forward scattering. Physics of Plasmas, 1994 , 1 , $1985-1996$.	1.9	3
185	Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions. Physical Review Letters, 1994, 72, 2717-2720.	7.8	149
186	Observation of near-forward stimulated Brillouin scattering from a laser-produced plasma. Physical Review Letters, 1993, 70, 802-805.	7.8	14
187	γâ€ray diagnostics of α slowing in inertial confinement fusion targets. Journal of Applied Physics, 1993, 74, 3638-3644.	2.5	1
188	Observation of plasma waves by Thomson scattering: Saturation of stimulated Raman scattering. Physical Review Letters, 1993, 71, 368-371.	7.8	18
189	Nearâ€forward scattering of laser light*. Physics of Fluids B, 1993, 5, 2596-2602.	1.7	6
190	Reply to â€~â€~Comments on â€~Ion acoustic parametric decay instability in laserâ€produced plasma with varying ionic charge' [Phys. Fluids B 3, 1983 (1991)]''. Physics of Fluids B, 1993, 5, 656-656.	1.7	0
191	Applications of nanosecond kilojoule lasers to the basic physics of waves in plasmas (Invited Paper). , 1992, , .		O
192	Evaluating the accuracy of opticalâ€streakâ€camera sweep rates using uncertain data. Review of Scientific Instruments, 1992, 63, 4322-4326.	1.3	9
193	Distributed absorption model for moderate to high laser powers. Physics of Fluids B, 1992, 4, 701-707.	1.7	32
194	Test of the Landau cutoff of stimulated Raman scattering spectra as an electron-temperature diagnostic in laser-produced plasmas. Physical Review Letters, 1992, 68, 484-487.	7.8	16
195	lon acoustic parametric decay instability in laserâ€produced plasma with varying ionic charge. Physics of Fluids B, 1991, 3, 1983-1989.	1.7	10
196	The angular dependence of the absorption of 0.35 μm laser light by highâ€Z, laserâ€produced plasmas. Physics of Fluids B, 1991, 3, 3477-3484.	1.7	5
197	Raman upâ€scattering in longâ€scaleâ€length, laserâ€produced plasmas. Physics of Fluids B, 1991, 3, 448-454.	1.7	13
198	Density and temperature profiles in strongly absorbing plasma with distributed absorption. Physics of Fluids B, 1991, 3, 1241-1244.	1.7	18

#	Article	IF	Citations
199	Production of very large, subâ€tenthâ€critical plasmas for laserâ€fusion research. Physics of Fluids B, 1991, 3, 2898-2905.	1.7	12
200	Experimental studies of stimulated Raman scattering in reactorâ€size, laserâ€produced plasmas. Physics of Fluids B, 1991, 3, 1473-1478.	1.7	16
201	The influence of subsidiary Langmuir decay on the spectrum of stimulated Raman scattering. Physics of Fluids B, 1991, 3, 2936-2938.	1.7	59
202	Three-wave parametric amplification in time-dependent media, with application to stimulated Brillouin scattering. Physical Review Letters, 1991, 67, 2477-2480.	7.8	12
203	Intensity scaling of stimulated Raman forward scattering in laser-produced plasmas. Physical Review Letters, 1991, 66, 2324-2327.	7.8	25
204	Comment on ' Energy and nonlinearity considerations for the enhanced plasma wave model of Raman scattering'' [Phys. Fluids B 1, 1073 (1989)]. Physics of Fluids B, 1990, 2, 225-226.	1.7	1
205	Backscattered light near the incident laser wavelength from 0.35 \hat{l} 4m irradiated long scale length plasmas. Physics of Fluids B, 1990, 2, 1907-1917.	1.7	30
206	Observation of stimulated Compton scattering from resonant electrons in a laser-produced plasma. Physical Review Letters, 1990, 64, 423-426.	7.8	15
207	Investigation of ion-acoustic-decay-instability thresholds in laser-plasma interactions. Physical Review Letters, 1990, 65, 428-431.	7.8	20
208	An experimental investigation of refractionâ€induced distortions in harmonicâ€light images of laserâ€produced plasmas. Journal of Applied Physics, 1990, 67, 3630-3634.	2.5	4
209	Competition between the stimulated Raman and Brillouin scattering instabilities in 0.35-ν m irradiated CH foil targets. Physical Review Letters, 1989, 62, 2829-2832.	7.8	53
210	Reduction of emission in the stimulated Raman scattering frequency band to thermal noise levels by collisional damping in a laser-produced plasma. Physical Review A, 1989, 39, 3536-3540.	2.5	15
211	X-ray emission caused by Raman scattering in long-scale-length plasmas. Physical Review A, 1989, 40, 3219-3225.	2.5	32
212	Hydrodynamic expansion of explodingâ€foil targets irradiated by 0.53 Î⅓m laser light. Physics of Fluids B, 1989, 1, 1089-1096.	1.7	26
213	Reply to the comments of Simon and Short. Physics of Fluids B, 1989, 1, 1342-1343.	1.7	2
214	Narrow Raman spectra: The competition between collisional and Landau damping. Physics of Fluids B, 1989, 1, 2217-2223.	1.7	20
215	Measurements of absorption and Brillouin sidescattering from planar plasmas produced by 0.53 \hat{l} 4m laser light. Physics of Fluids B, 1989, 1, 1295-1300.	1.7	12
216	The scaling of absolutely unstable, stimulated Raman scattering from planar, laserâ€produced plasmas. Physics of Fluids B, 1989, 1, 1082-1088.	1.7	16

#	Article	IF	CITATIONS
217	The effect of enhanced plasma waves on Thomson scattering with a highâ€frequency probe laser. Physics of Fluids B, 1989, 1, 2291-2293.	1.7	1
218	Evidence that stimulated Raman scattering in laser-produced plasmas is an absolute instability. Physical Review Letters, 1988, 60, 1018-1021.	7.8	60
219	Timeâ€resolved xâ€ray conversion efficiencies of laserâ€heated plasmas. Review of Scientific Instruments, 1988, 59, 1801-1803.	1.3	4
220	Drake, Williams, Young, Estabrook, Kruer, Baldis, and Johnston Reply. Physical Review Letters, 1988, 61, 2387-2387.	7.8	9
221	Simultaneous Spectrally and Spatially Resolved Measurements of 31% 02 Emission from Laser-Produced Plasmas. Physical Review Letters, 1988, 61, 2766-2769.	7.8	27
222	Direct Evidence of Ponderomotive Filamentation in a Laser-Produced Plasma. Physical Review Letters, 1988, 61, 2336-2339.	7.8	84
223	Studies of Raman scattering from overdense targets irradiated by several kilojoules of 0.53 \hat{l} 4m laser light. Physics of Fluids, 1988, 31, 3130.	1.4	51
224	Laser-intensity scaling experiments in long-scalelength, laser-produced plasmas. Physics of Fluids, 1988, 31, 1795.	1.4	43
225	Observation of Forward Raman Scattering in Laser-Produced Plasmas. Physical Review Letters, 1986, 57, 1725-1728.	7.8	55
226	Nova experimental facility (invited). Review of Scientific Instruments, 1986, 57, 2101-2106.	1.3	157
227	Evidence for Collisional Damping in High-Energy Raman-Scattering Experiments at 0.26 μm. Physical Review Letters, 1985, 54, 189-192.	7.8	74
228	Timeâ€resolved xâ€ray line intensities for diagnostics of laserâ€produced plasmas (abstract). Review of Scientific Instruments, 1985, 56, 844-844.	1.3	1
229	Efficient Raman Sidescatter and Hot-Electron Production in Laser-Plasma Interaction Experiments. Physical Review Letters, 1984, 53, 1739-1742.	7.8	87
230	TMX plasma edge parameters: Passive solidâ€state probe measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 1378-1383.	2.1	1
231	Energy confinement studies in the tandem mirror experiment (TMX): Power flow. Physics of Fluids, 1983, 26, 1987.	1.4	7
232	Energy confinement studies in the tandem mirror experiment (TMX): Power balance. Physics of Fluids, 1983, 26, 2003.	1.4	6
233	Dynamic gas flow during plasma operation in TMXâ€U. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 1288-1292.	2.1	14
234	Initial wall conditioning for the TMXâ€U fusion experiment. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 916-919.	2.1	7

#	Article	IF	CITATIONS
235	The LLNL tandem mirror experiment (TMX) upgrade vacuum system. Journal of Vacuum Science and Technology, 1982, 20, 1177-1181.	1.9	5
236	Design of first walls and beam dumps for Tandem Mirror Experiment Upgrade. Journal of Vacuum Science and Technology, 1982, 20, 1288-1291.	1.9	4
237	Plasma generation in gas box fueling for tandem mirrors. Journal of Vacuum Science and Technology, 1982, 20, 1259-1262.	1.9	4
238	Radial transport in the central cell of the tandem mirror experiment. Physics of Fluids, 1982, 25, 2110.	1.4	29
239	Ambipolar potential formation and axial confinement in TMX. Nuclear Fusion, 1982, 22, 223-234.	3.5	39
240	The effect of end-cell stability on the confinement of the central-cell plasma in TMX. Nuclear Fusion, 1981, 21, 359-364.	3.5	23
241	Gas control and wall conditioning in TMX. Journal of Nuclear Materials, 1980, 93-94, 291-296.	2.7	4
242	An extreme ultraviolet study of the 2XIIB neutral-beam-heated mirror machine. Nuclear Fusion, 1980, 20, 599-610.	3.5	9
243	Production of large-radius, high-beta, confined mirror plasmas. Nuclear Fusion, 1980, 20, 655-664.	3.5	31
244	Electrostatic Plasma-Confinement Experiments in a Tandem Mirror System. Physical Review Letters, 1980, 44, 1132-1135.	7.8	103
245	Evidence for neutral-beam-injected oxygen impurities in 2XIIB. Nuclear Fusion, 1979, 19, 407-410.	3.5	20
246	Experimental Astrophysics., 0,, 423-448.		0
247	Relativistic High-Energy-Density Systems. , 0, , 449-484.		0
248	Properties of High-Energy-Density Plasmas. , 0, , 55-105.		0
249	Shocks and Rarefactions. , 0, , 107-167.		0
250	Hydrodynamic Instabilities., 0,, 169-235.		0
251	Radiative Transfer., 0,, 237-266.		0
252	Inertial Confinement Fusion., 0,, 391-421.		0