Yongjun Men

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5004966/publications.pdf

Version: 2024-02-01

331259 414034 1,973 32 21 32 citations h-index g-index papers 32 32 32 2736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photo cleavable thioacetal block copolymers for controlled release. Polymer Chemistry, 2021, 12, 3612-3618.	1.9	12
2	lonizing Radiation-Induced Release from Poly($\hat{l}\mu$ -caprolactone- <i>b</i> ethylene glycol) Micelles. ACS Applied Polymer Materials, 2021, 3, 968-975.	2.0	11
3	Tailoring Polymersome Shape Using the Hofmeister Effect. Biomacromolecules, 2020, 21, 89-94.	2.6	25
4	A Fuelâ€Driven Chemical Reaction Network Based on Conjugate Addition and Elimination Chemistry. ChemSystemsChem, 2020, 2, e1900028.	1.1	15
5	Enhanced Cancer Therapy by Combining Radiation and Chemical Effects Mediated by Nanocarriers. Advanced Therapeutics, 2020, 3, 1900177.	1.6	18
6	Nonequilibrium Reshaping of Polymersomes <i>via</i> Polymer Addition. ACS Nano, 2019, 13, 12767-12773.	7.3	29
7	Stomatocyte in Stomatocyte: A New Shape of Polymersome Induced via Chemical-Addition Methodology. Nano Letters, 2018, 18, 2081-2085.	4.5	35
8	Nanomotorâ€Based Strategy for Enhanced Penetration across Vasculature Model. Advanced Functional Materials, 2018, 28, 1706117.	7.8	59
9	Poly(ionic liquid)s Based Brush Type Nanomotor. Micromachines, 2018, 9, 364.	1.4	3
10	Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery. ACS Nano, 2017, 11, 1957-1963.	7.3	211
11	Synthesis of regioselective starchâ€based macroinitiators at molecular level. Starch/Staerke, 2017, 69, 1700043.	1.1	2
12	Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chemistry, 2017, 9, 480-486.	6.6	254
13	Supramolecular Adaptive Nanomotors with Magnetotaxis Behavior. Advanced Materials, 2017, 29, 1604996.	11.1	81
14	Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air. International Journal of Molecular Sciences, 2016, 17, 532.	1.8	9
15	Methods for production of uniform small-sized polymersome with rigid membrane. Polymer Chemistry, 2016, 7, 3977-3982.	1.9	30
16	Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chemical Reviews, 2016, 116, 2023-2078.	23.0	254
17	Thermoresponsive polyelectrolytes derived from ionic liquids. Polymer Chemistry, 2015, 6, 2163-2178.	1.9	184
18	Preparation of corn starch- g -polystyrene copolymer in ionic liquid: 1-Ethyl-3-methylimidazolium acetate. Carbohydrate Polymers, 2015, 121, 348-354.	5.1	29

#	Article	IF	CITATION
19	Effect of water and methanol on the dissolution and gelatinization of corn starch in [MMIM][(MeO)HPO2]. RSC Advances, 2015, 5, 60330-60338.	1.7	13
20	Corn starch-based graft copolymers prepared via ATRP at the molecular level. Polymer Chemistry, 2015, 6, 3480-3488.	1.9	54
21	Thermal-sensitive Starch-g-PNIPAM prepared by Cu(0) catalyzed SET-LRP at molecular level. RSC Advances, 2015, 5, 70758-70765.	1.7	21
22	Poly(ionic liquid) Core Turns Hollow Silica Spheres into Amphiphilic Nanoreactor in Water. Chemistry of Materials, 2015, 27, 127-132.	3.2	32
23	Thiazoliumâ€Containing Poly(ionic liquid)s and Ionic Polymers. Macromolecular Symposia, 2014, 342, 67-77.	0.4	8
24	Poly(ionic liquid) colloidal particles. Current Opinion in Colloid and Interface Science, 2014, 19, 76-83.	3.4	61
25	Functional mesoporous poly(ionic liquid)-based copolymer monoliths: From synthesis to catalysis and microporous carbon production. Polymer, 2014, 55, 3423-3430.	1.8	82
26	Salt-confinement enables production of nitrogen-doped porous carbons in an air oven. RSC Advances, 2014, 4, 37714-37720.	1.7	7
27	Monodisperse Polymeric Core–Shell Nanocontainers for Organic Selfâ€Healing Anticorrosion Coatings. Advanced Materials Interfaces, 2014, 1, 1300019.	1.9	77
28	Thermoresponsive polymerized gemini dicationic ionic liquid. Polymer Chemistry, 2014, 5, 3719.	1.9	47
29	Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons. Journal of Materials Chemistry A, 2013, 1, 11887.	5.2	49
30	Doubleâ€Stimuliâ€Responsive Spherical Polymer Brushes with a Poly(ionic liquid) Core and a Thermoresponsive Shell. Macromolecular Rapid Communications, 2013, 34, 1721-1727.	2.0	57
31	Cationic Poly(ionic liquid) with Tunable Lower Critical Solution Temperature-Type Phase Transition. ACS Macro Letters, 2013, 2, 456-459.	2.3	114
32	Poly(tetrabutylphosphonium 4-styrenesulfonate): a poly(ionic liquid) stabilizer for graphene being multi-responsive. Polymer Chemistry, 2012, 3, 871.	1.9	90