Shawn E Lupold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5004682/publications.pdf

Version: 2024-02-01

41 papers 2,395 citations

304701 22 h-index

289230 40 g-index

41 all docs

41 docs citations

times ranked

41

3895 citing authors

#	Article	IF	CITATIONS
1	Longitudinal measurement of subcutaneous and intratibial human prostate cancer xenograft growth and response to ionizing radiation by plasma Alu and LINEâ€1 ctDNA: A comparison to standard methods. Prostate, 2021, 81, 745-753.	2.3	3
2	Alternative polyadenylation: An untapped source for prostate cancer biomarkers and therapeutic targets?. Asian Journal of Urology, 2021, 8, 407-415.	1.2	1
3	Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Molecular Pharmaceutics, 2020, 17, 98-108.	4.6	14
4	Development of 5D3-DM1: A Novel Anti-Prostate-Specific Membrane Antigen Antibody-Drug Conjugate for PSMA-Positive Prostate Cancer Therapy. Molecular Pharmaceutics, 2020, 17, 3392-3402.	4.6	20
5	Androgen receptor-modulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene, 2019, 38, 5700-5724.	5.9	59
6	Adding the Team into T1 Translational Research: A Case Study of Multidisciplinary Team Science in the Evaluation of Biomarkers of Prostate Cancer Risk and Prognosis. Clinical Chemistry, 2019, 65, 189-198.	3.2	6
7	PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance. Molecular Cancer Research, 2019, 17, 618-627.	3.4	23
8	New functions assigned to a microRNA with genetic links to prostate cancer risk. Annals of Translational Medicine, 2019, 7, S193-S193.	1.7	0
9	Obituary for Donald S. Coffey: Remembering a pioneer in the field of prostate cancer research. (1932–2017). Asian Journal of Urology, 2018, 5, 1-2.	1.2	1
10	The orally active pterocarpanquinone LQBâ€118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate, 2018, 78, 140-151.	2.3	9
11	Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Scientific Reports, 2018, 8, 7189.	3.3	41
12	Aptamers and apple pies: a mini-review of PSMA aptamers and lessons from Donald S. Coffey. American Journal of Clinical and Experimental Urology, 2018, 6, 78-86.	0.4	4
13	Differential long-term stability of microRNAs and RNU6B snRNA in 12–20 year old archived formalin-fixed paraffin-embedded specimens. BMC Cancer, 2017, 17, 32.	2.6	31
14	Development and Application of a Novel Model System to Study "Active―and "Passive―Tumor Targeting. Molecular Cancer Therapeutics, 2016, 15, 2541-2550.	4.1	9
15	Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate, 2016, 76, 215-225.	2.3	22
16	Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget, 2016, 7, 72593-72607.	1.8	71
17	MicroRNA expression and function in prostate cancer: a review of current knowledge and opportunities for discovery. Asian Journal of Andrology, 2016, 18, 559.	1.6	43
18	A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation. Nucleic Acids Research, 2015, 43, 4075-4086.	14.5	79

#	Article	IF	Citations
19	Real-time, Near-Infrared Fluorescence Imaging with an Optimized Dye/Light Source/Camera Combination for Surgical Guidance of Prostate Cancer. Clinical Cancer Research, 2015, 21, 771-780.	7.0	53
20	Systemic Administration and Targeted Radiosensitization via Chemically Synthetic Aptamer–siRNA Chimeras in Human Tumor Xenografts. Molecular Cancer Therapeutics, 2015, 14, 2797-2804.	4.1	18
21	Development and Screening of a Series of Antibodyâ€Conjugated and Silicaâ€Coated Iron Oxide Nanoparticles for Targeting the Prostateâ€5pecific Membrane Antigen. ChemMedChem, 2014, 9, 1356-1360.	3.2	25
22	Correlation of Sprouty1 and Jagged1 With Aggressive Prostate Cancer Cells With Different Sensitivities to Androgen Deprivation. Journal of Cellular Biochemistry, 2014, 115, 1505-1515.	2.6	22
23	Investigation of miR-21, miR-141, and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy. Prostate, 2014, 74, 1655-1662.	2.3	52
24	Evaluation of Prostate-Specific Membrane Antigen as an Imaging Reporter. Journal of Nuclear Medicine, 2014, 55, 805-811.	5.0	38
25	A novel approach for detecting viable and tissueâ€specific circulating tumor cells through an adenovirusâ€based reporter vector. Prostate, 2014, 74, 1286-1296.	2.3	9
26	A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Research, 2012, 40, 6821-6833.	14.5	79
27	A Real Time Metridia Luciferase Based Non-Invasive Reporter Assay of Mammalian Cell Viability and Cytotoxicity via the \hat{l}^2 -actin Promoter and Enhancer. PLoS ONE, 2012, 7, e36535.	2.5	26
28	Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. Journal of Clinical Investigation, 2011, 121, 2383-2390.	8.2	126
29	Adenovirus Targeting to Prostate-Specific Membrane Antigen through Virus-Displayed, Semirandom Peptide Library Screening. Cancer Research, 2010, 70, 9549-9553.	0.9	18
30	Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer. International Journal of Radiation Biology, 2010, 86, 220-229.	1.8	14
31	The transcriptional regulation of miR-21, its multiple transcripts and their implication in prostate cancer. Cell Cycle, 2010, 9, 923-929.	2.6	104
32	miR-21: An Androgen Receptor–Regulated MicroRNA that Promotes Hormone-Dependent and Hormone-Independent Prostate Cancer Growth. Cancer Research, 2009, 69, 7165-7169.	0.9	377
33	Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA). Journal of Medicinal Chemistry, 2008, 51, 4504-4517.	6.4	223
34	Radiohalogenated Prostate-Specific Membrane Antigen (PSMA)-Based Ureas as Imaging Agents for Prostate Cancer. Journal of Medicinal Chemistry, 2008, 51, 7933-7943.	6.4	180
35	A novel method for generating and screening peptides and libraries displayed on adenovirus fiber. Nucleic Acids Research, 2007, 35, e138-e138.	14.5	17
36	Androgen Receptor Attenuation of Ad5 Replication: Implications for the Development of Conditionally Replication Competent Adenoviruses. Molecular Therapy, 2007, 15, 1495-1503.	8.2	25

SHAWN E LUPOLD

#	Article	IF	CITATIONS
37	Valproic Acid, a Histone Deacetylase Inhibitor, Is an Antagonist for Oncolytic Adenoviral Gene Therapy. Molecular Therapy, 2006, 14, 768-778.	8.2	49
38	Valproic Acid Inhibits Invasiveness in Bladder Cancer but Not in Prostate Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 533-542.	2.5	38
39	Adenoviral gene therapy, radiation, and prostate cancer. Reviews in Urology, 2005, 7, 193-202.	0.9	4
40	Disulfide-constrained peptides that bind to the extracellular portion of the prostate-specific membrane antigen. Molecular Cancer Therapeutics, 2004, 3, 597-603.	4.1	26
41	Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Research, 2002, 62, 4029-33.	0.9	436