Zhanyu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5004411/publications.pdf

Version: 2024-02-01

25	900	17 h-index	25
papers	citations		g-index
25	25	25	873
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rechargeable Aluminum-Ion Battery Based on MoS ₂ Microsphere Cathode. ACS Applied Materials & Dictionary (1988) amp; Interfaces, 2018, 10, 9451-9459.	8.0	171
2	A Novel Graphite–Graphite Dual Ion Battery Using an AlCl ₃ –[EMIm]Cl Liquid Electrolyte. Small, 2018, 14, e1800745.	10.0	73
3	Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chemical Engineering Journal, 2020, 398, 125679.	12.7	70
4	Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries. Journal of Power Sources, 2019, 422, 49-56.	7.8	61
5	Two-dimensional composite of D-Ti ₃ C ₂ T _x @S@TiO ₂ (MXene) as the cathode material for aluminum-ion batteries. Nanoscale, 2020, 12, 3387-3399.	5.6	60
6	Two-dimensional V2C@Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Energy Storage Materials, 2022, 46, 138-146.	18.0	56
7	3D hierarchical AlV3O9 microspheres as a cathode material for rechargeable aluminum-ion batteries. Electrochimica Acta, 2019, 298, 288-296.	5.2	47
8	Structure and electrochemical properties of Sm-doped Li ₄ Ti ₅ O ₁₂ as anode material for lithium-ion batteries. RSC Advances, 2016, 6, 15492-15500.	3.6	42
9	Novel One-Dimensional Hollow Carbon Nanotubes/Selenium Composite for High-Performance Al-Se Batteries. ACS Applied Materials & Interfaces, 2019, 11, 45709-45716.	8.0	35
10	Prelithiation treatment of graphite as cathode material for rechargeable aluminum batteries. Electrochimica Acta, 2018, 263, 68-75.	5.2	31
11	Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al-Se batteries. Chemical Engineering Journal, 2020, 400, 126000.	12.7	30
12	A novel CuSe-Cu1.8Se heterostructure with hexahedral structure cathode material for aluminum batteries. Chemical Engineering Journal, 2021, 426, 131899.	12.7	28
13	A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon, 2018, 138, 52-60.	10.3	27
14	Understanding the enhanced electrochemical performance of samarium substituted Li[Li0.2Mn0.54â°'xSmxCo0.13Ni0.13]O2 cathode material for lithium ion batteries. Solid State Ionics, 2016, 293, 7-12.	2.7	25
15	Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional PrAoxide surface modification. Ceramics International, 2016, 42, 18620-18630.	4.8	24
16	A high-performance graphite-graphite dual ion battery based on AlCl3/NaCl molten salts. Journal of Power Sources, 2020, 475, 228628.	7.8	22
17	Synthesis and electrochemical performance of Li4Ti5O12 submicrospheres coated with TiN as anode materials for lithium-ion battery. Ceramics International, 2016, 42, 15464-15470.	4.8	21
18	Pseudocapacitance effect in Al-C batteries with expanded graphite positive electrode at different temperatures. Journal of Power Sources, 2020, 467, 228323.	7.8	16

ZHANYU LI

#	Article	IF	CITATION
19	Rhombic dodecahedron hetero-structure Zn/Co–Se@C as cathode material for aluminum batteries with excellent electrochemical performance. Journal of Power Sources, 2021, 511, 230455.	7.8	15
20	Multi-type cubic ComXn (XÂ=ÂO, S, Se) induced by zeolitic imidazolate framework (ZIF) as cathode materials for aluminum battery. Chemical Engineering Journal, 2022, 430, 133135.	12.7	12
21	Metal–Organic Framework Structure with Fe–Co–Se (MIL-88A/Fe–Co@Se) as a Cathode for Aluminum Batteries. ACS Applied Materials & Interfaces, 2021, 13, 61107-61115.	8.0	12
22	Pr-modified Li4Ti5O12 nanofibers as an anode material for lithium-ion batteries with outstanding cycling performance and rate performance. Ionics, 2017, 23, 597-605.	2.4	8
23	Influence of cooling mode on the electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Ionics, 2016, 22, 789-795.	2.4	7
24	High-performance carbon-coated hollow nanocube ZnSe as cathode material for aluminum batteries. Journal of Alloys and Compounds, 2022, 920, 166006.	5 . 5	5
25	Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries. Electrochimica Acta, 2022, 401, 139498.	5 . 2	2