
Fengjia Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5004048/publications.pdf Version: 2024-02-01

FENCUA FAN

#	Article	IF	CITATIONS
1	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	12.6	2,019
2	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	12.6	1,948
3	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	27.8	1,429
4	Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dotÂsolids. Nature Materials, 2017, 16, 258-263.	27.5	563
5	Quantum-dot-in-perovskite solids. Nature, 2015, 523, 324-328.	27.8	468
6	Amineâ€Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 8757-8763.	14.9	344
7	Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics, 2020, 14, 82-88.	31.4	326
8	Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 2017, 544, 75-79.	27.8	319
9	10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. Nano Letters, 2016, 16, 4630-4634.	9.1	312
10	Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. Advanced Materials, 2016, 28, 299-304.	21.0	312
11	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nature Photonics, 2018, 12, 159-164.	31.4	303
12	High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015, 15, 7691-7696.	9.1	198
13	Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design. Angewandte Chemie - International Edition, 2013, 52, 1654-1659.	13.8	182
14	Colloidal Synthesis of Cu ₂ CdSnSe ₄ Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit. Journal of the American Chemical Society, 2011, 133, 15910-15913.	13.7	149
15	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	39.5	132
16	Large‣cale Colloidal Synthesis of Non‣toichiometric Cu ₂ ZnSnSe ₄ Nanocrystals for Thermoelectric Applications. Advanced Materials, 2012, 24, 6158-6163.	21.0	128
17	Superlong β-AgVO ₃ Nanoribbons: High-Yield Synthesis by a Pyridine-Assisted Solution Approach, Their Stability, Electrical and Electrochemical Properties. ACS Nano, 2009, 3, 653-660.	14.6	119
18	Colloidal CdSe _{1–<i>x</i>} S _{<i>x</i>} Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. Nano Letters, 2015, 15, 4611-4615.	9.1	114

Fengjia Fan

#	Article	IF	CITATIONS
19	Microsecond-sustained lasing from colloidal quantum dot solids. Nature Communications, 2015, 6, 8694.	12.8	109
20	Multifunctional quantum dot DNA hydrogels. Nature Communications, 2017, 8, 381.	12.8	104
21	Composition- and Band-Gap-Tunable Synthesis of Wurtzite-Derived Cu ₂ ZnSn(S _{1–<i>x</i>} Se _{<i>x</i>}) ₄ Nanocrystals: Theoretical and Experimental Insights. ACS Nano, 2013, 7, 1454-1463.	14.6	89
22	A Facet‧pecific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. Advanced Materials, 2019, 31, e1805580.	21.0	87
23	Origins of Stokes Shift in PbS Nanocrystals. Nano Letters, 2017, 17, 7191-7195.	9.1	72
24	Bulk-like ZnSe Quantum Dots Enabling Efficient Ultranarrow Blue Light-Emitting Diodes. Nano Letters, 2021, 21, 7252-7260.	9.1	69
25	Cu1.94S nanocrystal seed mediated solution-phase growth of unique Cu2S–PbS heteronanostructures. Chemical Communications, 2012, 48, 9762.	4.1	66
26	Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433.	14.6	66
27	Pt–Ni alloyed nanocrystals with controlled architectures for enhanced methanol oxidation. Chemical Communications, 2013, 49, 8704.	4.1	64
28	Selective hydrogenation of nitroaromatics by ceria nanorods. Nanoscale, 2013, 5, 7219.	5.6	58
29	Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties. Journal of the American Chemical Society, 2016, 138, 5576-5584.	13.7	54
30	Regioselective magnetization in semiconducting nanorods. Nature Nanotechnology, 2020, 15, 192-197.	31.5	51
31	Efficient defect passivation of Sb ₂ Se ₃ film by tellurium doping for high performance solar cells. Journal of Materials Chemistry A, 2020, 8, 6510-6516.	10.3	48
32	Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. Nano Letters, 2020, 20, 1468-1474.	9.1	48
33	Linearly arranged polytypic CZTSSe nanocrystals. Scientific Reports, 2012, 2, 952.	3.3	45
34	Design of Phosphor White Light Systems for High-Power Applications. ACS Photonics, 2016, 3, 2243-2248.	6.6	37
35	Controlled Synthesis of Kinked Ultrathin ZnS Nanorods/Nanowires Triggered by Chloride Ions: A Case Study. Small, 2014, 10, 1394-1402.	10.0	35
36	A Family of Carbon-Based Nanocomposite Tubular Structures Created by <i>in Situ</i> Electron Beam Irradiation. ACS Nano, 2012, 6, 4500-4507.	14.6	34

Fengjia Fan

#	Article	IF	CITATIONS
37	Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. Nature Communications, 2018, 9, 4947.	12.8	22
38	Selective epitaxial growth of zinc blende-derivative on wurtzite-derivative: the case of polytypic Cu2CdSn(S1â^'xSex)4 nanocrystals. Nanoscale, 2014, 6, 3418.	5.6	19
39	Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm ² Regime. Chemistry of Materials, 2017, 29, 5104-5112.	6.7	17
40	One-Dimensional Superlattice Heterostructure Library. Journal of the American Chemical Society, 2021, 143, 7013-7020.	13.7	16
41	Evaluating Lead Halide Perovskite Nanocrystals as a Spin Laser Gain Medium. Nano Letters, 2022, 22, 658-664.	9.1	13
42	Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Science Advances, 2022, 8, eabl8219.	10.3	10
43	Temperature-Induced Self-Compensating Defect Traps and Gain Thresholds in Colloidal Quantum Dots. ACS Nano, 2019, 13, 8970-8976.	14.6	8
44	Optical-Gain-based Sensing Using Inorganic-Ligand-Passivated Colloidal Quantum Dots. Nano Letters, 2021, 21, 7732-7739.	9.1	6
45	Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing. Applied Physics Letters, 2015, 107, .	3.3	5
46	Reply to: Perovskite decomposition and missing crystal planes in HRTEM. Nature, 2021, 594, E8-E9.	27.8	2