Stefan M Pfister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003998/publications.pdf

Version: 2024-02-01

594 papers 81,593 citations

127 h-index 262 g-index

625 all docs

625
docs citations

625 times ranked

62315 citing authors

#	Article	IF	CITATIONS
1	Signatures of mutational processes in human cancer. Nature, 2013, 500, 415-421.	13.7	8,060
2	The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology, 2021, 23, 1231-1251.	0.6	4,534
3	Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 2012, 482, 226-231.	13.7	2,129
4	International network of cancer genome projects. Nature, 2010, 464, 993-998.	13.7	2,114
5	Pan-cancer analysis of whole genomes. Nature, 2020, 578, 82-93.	13.7	1,966
6	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	13.7	1,872
7	Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.	7.7	1,551
8	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	3.9	1,536
9	Medulloblastoma Comprises Four Distinct Molecular Variants. Journal of Clinical Oncology, 2011, 29, 1408-1414.	0.8	1,131
10	The landscape of genomic alterations across childhood cancers. Nature, 2018, 555, 321-327.	13.7	1,068
11	Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process. PLoS ONE, 2008, 3, e2213.	1.1	939
12	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	7.7	933
13	Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 397-405.	3.9	914
14	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	3.9	863
15	K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 2012, 124, 439-447.	3.9	799
16	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
17	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	13.7	765
18	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761

#	Article	IF	CITATIONS
19	Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations. Cell, 2012, 148, 59-71.	13.5	743
20	Glioma. Nature Reviews Disease Primers, 2015, 1, 15017.	18.1	718
21	Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell, 2017, 32, 520-537.e5.	7.7	716
22	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	13.5	702
23	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106-110.	13.7	675
24	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	9.4	674
25	Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell, 2013, 24, 660-672.	7.7	633
26	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	7.7	627
27	Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncology, The, 2020, 21, 531-540.	5.1	608
28	DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncology, The, 2017, 18, 682-694.	5.1	586
29	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	12.8	560
30	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	12.5	540
31	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	13.7	521
32	Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 2014, 511, 428-434.	13.7	520
33	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	7.7	494
34	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	3.9	478
35	Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nature Reviews Cancer, 2014, 14, 92-107.	12.8	469
36	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	7.7	438

#	Article	IF	CITATIONS
37	BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. Journal of Clinical Investigation, 2008, 118, 1739-1749.	3.9	437
38	BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nature Medicine, 2013, 19, 901-908.	15.2	388
39	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	0.8	381
40	Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 2014, 46, 462-466.	9.4	381
41	DNA methylation pattern changes upon longâ€ŧerm culture and aging of human mesenchymal stromal cells. Aging Cell, 2010, 9, 54-63.	3.0	378
42	Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 2014, 510, 537-541.	13.7	378
43	ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an "integrated―diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathologica, 2015, 129, 133-146.	3.9	378
44	Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica, 2012, 124, 615-625.	3.9	376
45	Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature, 2012, 482, 529-533.	13.7	376
46	Medulloblastoma. Nature Reviews Disease Primers, 2019, 5, 11.	18.1	376
47	Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nature Reviews Genetics, 2013, 14, 765-780.	7.7	373
48	Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clinical Cancer Research, 2017, 23, e38-e45.	3.2	358
49	The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell, 2013, 153, 1064-1079.	13.5	348
50	Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nature Genetics, 2017, 49, 65-74.	9.4	326
51	Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathologica, 2013, 125, 651-658.	3.9	324
52	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathologica, 2012, 123, 615-626.	3.9	318
53	Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature, 2016, 530, 57-62.	13.7	318
54	Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncology, The, 2019, 20, 1011-1022.	5.1	315

#	Article	IF	CITATIONS
55	Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathologica, 2018, 136, 181-210.	3.9	308
56	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	5.1	307
57	Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathologica, 2018, 136, 153-166.	3.9	298
58	Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.	3.9	277
59	Outcome Prediction in Pediatric Medulloblastoma Based on DNA Copy-Number Aberrations of Chromosomes 6q and 17q and the <i>MYC</i> and <i>MYCN</i> Loci. Journal of Clinical Oncology, 2009, 27, 1627-1636.	0.8	274
60	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	5.1	274
61	Resolving medulloblastoma cellular architecture by single-cell genomics. Nature, 2019, 572, 74-79.	13.7	273
62	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	3.9	271
63	Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathologica, 2014, 128, 551-559.	3.9	268
64	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	5.1	268
65	An Animal Model of MYC-Driven Medulloblastoma. Cancer Cell, 2012, 21, 155-167.	7.7	267
66	A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nature Communications, 2015, 6, 10001.	5.8	266
67	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	13.7	266
68	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263
69	Next-generation personalised medicine for high-risk paediatric cancer patients – The INFORM pilot study. European Journal of Cancer, 2016, 65, 91-101.	1.3	262
70	The clinical implications of medulloblastoma subgroups. Nature Reviews Neurology, 2012, 8, 340-351.	4.9	261
71	Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biology, 2010, 11, 11.	3.0	260
72	Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathologica, 2009, 118, 401-405.	3.9	255

#	Article	IF	Citations
73	Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica, 2013, 126, 907-915.	3.9	254
74	Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathologica, 2013, 125, 659-669.	3.9	250
75	Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. Journal of Clinical Oncology, 2018, 36, 1963-1972.	0.8	250
76	Mutations in the SIX1/2 Pathway and the DROSHA/DGCR8 miRNA Microprocessor Complex Underlie High-Risk Blastemal Type Wilms Tumors. Cancer Cell, 2015, 27, 298-311.	7.7	248
77	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	3.9	244
78	Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nature Communications, 2015, 6, 7391.	5.8	244
79	Quiescent Sox2+ Cells Drive Hierarchical Growth and Relapse in Sonic Hedgehog Subgroup Medulloblastoma. Cancer Cell, 2014, 26, 33-47.	7.7	241
80	Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathologica, 2015, 130, 407-417.	3.9	237
81	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	5.8	237
82	Radiogenomics of Glioblastoma: Machine Learning–based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology, 2016, 281, 907-918.	3.6	236
83	BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature, 2013, 497, 624-627.	13.7	230
84	Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. Journal of Clinical Oncology, 2017, 35, 2370-2377.	0.8	223
85	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	0.6	217
86	Adult Medulloblastoma Comprises Three Major Molecular Variants. Journal of Clinical Oncology, 2011, 29, 2717-2723.	0.8	215
87	Identification of Gains on 1q and Epidermal Growth Factor Receptor Overexpression as Independent Prognostic Markers in Intracranial Ependymoma. Clinical Cancer Research, 2006, 12, 2070-2079.	3.2	212
88	Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncology, The, 2013, 14, 534-542.	5.1	212
89	Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 763-774.	3.9	211
90	Molecular Staging of Intracranial Ependymoma in Children and Adults. Journal of Clinical Oncology, 2010, 28, 3182-3190.	0.8	210

#	Article	IF	CITATIONS
91	Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathologica, 2013, 125, 351-358.	3.9	208
92	HDAC and PI3K Antagonists Cooperate to Inhibit Growth of MYC- Driven Medulloblastoma. Cancer Cell, 2016, 29, 311-323.	7.7	204
93	Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathologica, 2016, 131, 903-910.	3.9	203
94	Childhood cancer predisposition syndromesâ€"A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. American Journal of Medical Genetics, Part A, 2017, 173, 1017-1037.	0.7	200
95	Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathologica, 2018, 136, 211-226.	3.9	199
96	Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathologica, 2011, 122, 231-240.	3.9	195
97	Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathologica, 2018, 136, 793-803.	3.9	195
98	Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathologica, 2014, 128, 279-289.	3.9	191
99	Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathologica, 2018, 136, 273-291.	3.9	190
100	Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nature Medicine, 2016, 22, 1314-1320.	15.2	183
101	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	3.9	180
102	MAPK pathway activation in pilocytic astrocytoma. Cellular and Molecular Life Sciences, 2012, 69, 1799-1811.	2.4	177
103	Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma. Acta Neuropathologica, 2014, 128, 561-571.	3.9	176
104	HDAC5 and HDAC9 in Medulloblastoma: Novel Markers for Risk Stratification and Role in Tumor Cell Growth. Clinical Cancer Research, 2010, 16, 3240-3252.	3.2	175
105	Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro-Oncology, 2014, 16, 1408-1416.	0.6	175
106	EANO guidelines for the diagnosis and treatment of ependymal tumors. Neuro-Oncology, 2018, 20, 445-456.	0.6	173
107	Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nature Medicine, 2020, 26, 712-719.	15.2	172
108	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	13.7	170

#	Article	IF	CITATIONS
109	Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-Oncology, 2018, 20, 848-857.	0.6	170
110	cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAFV600E mutation. Acta Neuropathologica, 2019, 137, 683-687.	3.9	170
111	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	3.9	169
112	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathologica, 2017, 134, 705-714.	3.9	168
113	Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncology, The, 2013, 14, e370-e379.	5.1	167
114	Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathologica, 2016, 131, 137-146.	3.9	162
115	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	0.8	160
116	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	7.7	157
117	Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma. Acta Neuropathologica, 2017, 133, 431-444.	3.9	155
118	Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathologica, 2016, 131, 877-887.	3.9	151
119	Risk-adapted therapy for young children with medulloblastoma (SJYCO7): therapeutic and molecular outcomes from a multicentre, phase 2 trial. Lancet Oncology, The, 2018, 19, 768-784.	5.1	151
120	Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncology, The, 2012, 13, 838-848.	5.1	148
121	Medulloblastomics revisited: biological and clinical insights from thousands of patients. Nature Reviews Cancer, 2020, 20, 42-56.	12.8	147
122	The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. International Journal of Cancer, 2008, 122, 1207-1213.	2.3	146
123	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	3.9	146
124	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	7.7	146
125	Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathologica, 2012, 123, 539-552.	3.9	145
126	H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathologica, 2017, 134, 507-516.	3.9	144

#	Article	IF	CITATIONS
127	<i>FSTL5</i> Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma. Journal of Clinical Oncology, 2011, 29, 3852-3861.	0.8	143
128	Molecular subgroups of medulloblastoma. Expert Review of Neurotherapeutics, 2012, 12, 871-884.	1.4	142
129	Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial. Cancer Cell, 2018, 33, 829-842.e5.	7.7	140
130	Adult and Pediatric Medulloblastomas Are Genetically Distinct and Require Different Algorithms for Molecular Risk Stratification. Journal of Clinical Oncology, 2010, 28, 3054-3060.	0.8	136
131	Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathologica Communications, 2016, 4, 20.	2.4	136
132	Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas. Clinical Cancer Research, 2011, 17, 4650-4660.	3.2	135
133	Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathologica, 2010, 120, 253-260.	3.9	129
134	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	13.7	129
135	Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis. Acta Neuropathologica, 2016, 132, 149-151.	3.9	127
136	Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathologica, 2014, 128, 137-149.	3.9	125
137	Molecular Insights into Pediatric Brain Tumors Have the Potential to Transform Therapy. Clinical Cancer Research, 2014, 20, 5630-5640.	3.2	124
138	A biobank of patient-derived pediatric brain tumor models. Nature Medicine, 2018, 24, 1752-1761.	15.2	124
139	Recommendations for Cancer Surveillance in Individuals with RASopathies and Other Rare Genetic Conditions with Increased Cancer Risk. Clinical Cancer Research, 2017, 23, e83-e90.	3.2	122
140	Treatment of Children and Adolescents With Metastatic Medulloblastoma and Prognostic Relevance of Clinical and Biologic Parameters. Journal of Clinical Oncology, 2016, 34, 4151-4160.	0.8	121
141	Announcing clMPACT-NOW: the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. Acta Neuropathologica, 2017, 133, 1-3.	3.9	120
142	A cellâ€based model system links chromothripsis with hyperploidy. Molecular Systems Biology, 2015, 11, 828.	3.2	118
143	Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nature Communications, 2017, 8, 14758.	5.8	118
144	Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathologica, 2018, 136, 239-253.	3.9	118

#	Article	IF	Citations
145	Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathologica, 2014, 128, 733-741.	3.9	116
146	Pediatric low-grade gliomas: next biologically driven steps. Neuro-Oncology, 2018, 20, 160-173.	0.6	116
147	CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathologica, 2020, 140, 409-413.	3.9	116
148	LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathologica, 2012, 124, 875-881.	3.9	115
149	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	9.4	112
150	HD-MB03 is a novel GroupÂ3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment. Journal of Neuro-Oncology, 2012, 110, 335-348.	1.4	110
151	The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	15.2	110
152	The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discovery, 2021, 11, 2764-2779.	7.7	110
153	Novel genomic amplification targeting the microRNA cluster at $19q13.42$ in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathologica, 2009, 117 , 457-464.	3.9	106
154	EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro-Oncology, 2019, 21, 878-889.	0.6	106
155	Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). Journal of Clinical Oncology, 2021, 39, 822-835.	0.8	106
156	High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF- $\hat{1}^2$ and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood, 2009, 114, 1053-1062.	0.6	105
157	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.	7.7	104
158	Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathologica, 2018, 136, 327-337.	3.9	104
159	MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathologica, 2019, 138, 1075-1089.	3.9	104
160	Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3-K27M mutation. Acta Neuropathologica, 2020, 139, 1109-1113.	3.9	104
161	Nuclear relocation of <scp>STAT</scp> 6 reliably predicts <i>NAB2</i> â€" <i>STAT6</i> fusion for the diagnosis of solitary fibrous tumour. Histopathology, 2014, 65, 613-622.	1.6	101
162	Methylation array profiling of adult brain tumours: diagnostic outcomes in a large, single centre. Acta Neuropathologica Communications, 2019, 7, 24.	2.4	101

#	Article	IF	CITATIONS
163	<i>TP53</i> Mutation Is Frequently Associated With <i>CTNNB1</i> Mutation or <i>MYCN</i> Amplification and Is Compatible With Long-Term Survival in Medulloblastoma. Journal of Clinical Oncology, 2010, 28, 5188-5196.	0.8	100
164	N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro-Oncology, 2019, 21, 95-105.	0.6	100
165	Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nature Reviews Cancer, 2019, 19, 420-438.	12.8	98
166	CD28 Signaling via VAV/SLP-76 Adaptors. Immunity, 2001, 15, 921-933.	6.6	96
167	Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions. Nucleic Acids Research, 2015, 43, e10-e10.	6. 5	95
168	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	13.7	94
169	Single-Cell RNA-Seq Reveals Cellular Hierarchies and Impaired Developmental Trajectories in Pediatric Ependymoma. Cancer Cell, 2020, 38, 44-59.e9.	7.7	94
170	Germline Elongator mutations in Sonic Hedgehog medulloblastoma. Nature, 2020, 580, 396-401.	13.7	94
171	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	13.5	93
172	Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. Journal of Clinical Oncology, 2021, 39, 3839-3852.	0.8	93
173	PDX-MI: Minimal Information for Patient-Derived Tumor Xenograft Models. Cancer Research, 2017, 77, e62-e66.	0.4	92
174	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	7.7	90
175	Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathology, 2018, 28, 656-662.	2.1	89
176	Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data. Nature Protocols, 2020, 15, 479-512.	5.5	89
177	AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathologica, 2013, 126, 757-762.	3.9	88
178	MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathologica, 2012, 123, 501-513.	3.9	87
179	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	3.9	86
180	A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes. Cancer Cell, 2015, 28, 730-742.	7.7	85

#	Article	IF	CITATIONS
181	Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathologica, 2013, 126, 291-301.	3.9	84
182	Molecular Characterization of Choroid Plexus Tumors Reveals Novel Clinically Relevant Subgroups. Clinical Cancer Research, 2015, 21, 184-192.	3.2	84
183	Molecular diagnostics of CNS embryonal tumors. Acta Neuropathologica, 2010, 120, 553-566.	3.9	83
184	Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas. Cancer Research, 2016, 76, 5523-5537.	0.4	83
185	Transcriptomic and epigenetic profiling of  diffuse midline gliomas, H3 K27M-mutant' discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathologica Communications, 2018, 6, 117.	2.4	83
186	Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathologica, 2020, 139, 193-209.	3.9	83
187	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	3.9	80
188	Molecular differences in IDH wildtype glioblastoma according to MGMT promoter methylation. Neuro-Oncology, 2018, 20, 367-379.	0.6	79
189	A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathologica, 2011, 122, 637-650.	3.9	77
190	Assessing CpG island methylator phenotype, $1p/19q$ codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial. Neuro-Oncology, 2014, 16, 1630-1638.	0.6	77
191	Supratentorial primitive neuroectodermal tumors of the central nervous system frequently harbor deletions of theCDKN2A locus and other genomic aberrations distinct from medulloblastomas. Genes Chromosomes and Cancer, 2007, 46, 839-851.	1.5	76
192	Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information. Modern Pathology, 2018, 31, 1246-1256.	2.9	76
193	Functional characterization of a <i>BRAF</i> insertion mutant associated with pilocytic astrocytoma. International Journal of Cancer, 2011, 129, 2297-2303.	2.3	75
194	A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of <i>EGFR</i> . Neuro-Oncology, 2021, 23, 34-43.	0.6	75
195	Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies. PLoS ONE, 2013, 8, e66621.	1.1	74
196	Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathologica, 2015, 130, 419-434.	3.9	74
197	Gliomatosis cerebri: no evidence for a separate brain tumor entity. Acta Neuropathologica, 2016, 131, 309-319.	3.9	74
198	Identification and Analyses of Extra-Cranial and Cranial Rhabdoid Tumor Molecular Subgroups Reveal Tumors with Cytotoxic T Cell Infiltration. Cell Reports, 2019, 29, 2338-2354.e7.	2.9	74

#	Article	IF	Citations
199	Mutational patterns and regulatory networks in epigenetic subgroups of meningioma. Acta Neuropathologica, 2019, 138, 295-308.	3.9	74
200	The RNA-Binding Protein Musashi1 Affects Medulloblastoma Growth via a Network of Cancer-Related Genes and Is an Indicator of Poor Prognosis. American Journal of Pathology, 2012, 181, 1762-1772.	1.9	73
201	Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-Oncology, 2013, 15, 1644-1651.	0.6	73
202	Pediatric low-grade gliomas: implications of the biologic era. Neuro-Oncology, 2017, 19, now209.	0.6	73
203	Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathologica, 2016, 132, 635-637.	3.9	73
204	Super enhancers define regulatory subtypes and cell identity in neuroblastoma. Nature Cancer, 2021, 2, 114-128.	5.7	73
205	Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. Lancet Oncology, The, 2015, 16, e293-e302.	5.1	72
206	Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nature Communications, 2018, 9, 2378.	5.8	72
207	Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathologica, 2012, 123, 601-614.	3.9	71
208	Adaptor FYB (Fyn-binding protein) regulates integrin-mediated adhesion and mediator release: Differential involvement of the FYB SH3 domain. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11527-11532.	3.3	70
209	A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discovery, 2022, 12, 331-355.	7.7	70
210	The Genetics of Pediatric Brain Tumors. Current Neurology and Neuroscience Reports, 2010, 10, 215-223.	2.0	69
211	Integrated molecular characterization of <i><scp>IDH</scp></i> â€mutant glioblastomas. Neuropathology and Applied Neurobiology, 2019, 45, 108-118.	1.8	68
212	Response to trametinib treatment in progressive pediatric low-grade glioma patients. Journal of Neuro-Oncology, 2020, 149, 499-510.	1.4	68
213	An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. Journal of Clinical Investigation, 2011, 121, 1344-1348.	3.9	68
214	Genome-wide molecular characterization of central nervous system primitive neuroectodermal tumor and pineoblastoma. Neuro-Oncology, 2011, 13, 866-879.	0.6	67
215	Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer. Cell, 2013, 155, 567-581.	13.5	67
216	Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups. Neuro-Oncology, 2016, 18, 790-796.	0.6	67

#	Article	IF	CITATIONS
217	Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathologica, 2012, 123, 515-527.	3.9	66
218	Melanotic Tumors of the Nervous System are Characterized by Distinct Mutational, Chromosomal and Epigenomic Profiles. Brain Pathology, 2015, 25, 202-208.	2.1	66
219	Targeting class I histone deacetylase 2 in MYC amplified group 3 medulloblastoma. Acta Neuropathologica Communications, 2015, 3, 22.	2.4	66
220	Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nature Communications, 2018, 9, 4760.	5.8	66
221	Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: the randomized, open-label, phase II ARTE trial. Annals of Oncology, 2018, 29, 1423-1430.	0.6	65
222	DNA methylation-based classification of ependymomas in adulthood: implications for diagnosis and treatment. Neuro-Oncology, 2018, 20, 1616-1624.	0.6	65
223	YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nature Communications, 2019, 10, 3914.	5.8	65
224	Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell, 2019, 35, 95-110.e8.	7.7	65
225	Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis. Leukemia, 2008, 22, 2054-2061.	3.3	63
226	cIMPACTâ€NOW (the consortium to inform molecular and practical approaches to CNS tumor) Tj ETQq0 0 0 rgE 27, 851-852.	3T /Overloo 2.1	ck 10 Tf 50 38 63
227	Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma. Cancer Research, 2010, 70, 8003-8014.	0.4	62
228	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016, 7, 28169-28182.	0.8	62
229	Early phase clinical trials of anticancer agents in children and adolescents — an ITCC perspective. Nature Reviews Clinical Oncology, 2017, 14, 497-507.	12.5	61
230	MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 2012, 123, 529-538.	3.9	60
231	DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathologica, 2018, 136, 255-271.	3.9	59
232	Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Research, 2007, 35, e51.	6. 5	58
233	FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO Journal, 2016, 35, 2192-2212.	3.5	58
234	Implementation of mechanism of action biology-driven early drug development for children with cancer. European Journal of Cancer, 2016, 62, 124-131.	1.3	58

#	Article	IF	CITATIONS
235	Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1â€deficient nonâ€rhabdoid tumor with favorable longâ€term outcome. Brain Pathology, 2017, 27, 411-418.	2.1	58
236	Extensive Molecular and Clinical Heterogeneity in Patients With Histologically Diagnosed CNS-PNET Treated as a Single Entity: A Report From the Children's Oncology Group Randomized ACNS0332 Trial. Journal of Clinical Oncology, 2018, 36, 3388-3395.	0.8	58
237	Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. Journal of Clinical Oncology, 2020, 38, 2028-2040.	0.8	58
238	Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1. Acta Neuropathologica, 2019, 138, 497-504.	3.9	57
239	Multicenter pilot study of radiochemotherapy as first-line treatment for adults with medulloblastoma (NOA-07). Neuro-Oncology, 2018, 20, 400-410.	0.6	56
240	FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma. Acta Neuropathologica, 2018, 136, 293-302.	3.9	56
241	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	5.2	56
242	TelomereHunter – in silico estimation of telomere content and composition from cancer genomes. BMC Bioinformatics, 2019, 20, 272.	1.2	56
243	EANO–EURACAN clinical practice guideline for diagnosis, treatment, and follow-up of post-pubertal and adult patients with medulloblastoma. Lancet Oncology, The, 2019, 20, e715-e728.	5.1	56
244	H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell, 2021, 39, 407-422.e13.	7.7	56
245	Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. Nature Communications, 2019, 10, 332.	5.8	55
246	Diagnostics of pediatric supratentorial RELA ependymomas: integration of information from histopathology, genetics, DNA methylation and imaging. Brain Pathology, 2019, 29, 325-335.	2.1	55
247	The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clinical Cancer Research, 2019, 25, 1851-1866.	3.2	55
248	DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. The Lancet Child and Adolescent Health, 2020, 4, 121-130.	2.7	55
249	Genomic and transcriptomic analyses match medulloblastoma mouse models to their human counterparts. Acta Neuropathologica, 2014, 128, 123-136.	3.9	54
250	Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma. Nature Communications, 2018, 9, 2868.	5.8	54
251	Subgroup-specific localization of human medulloblastoma based on pre-operative MRI. Acta Neuropathologica, 2014, 127, 931-933.	3.9	53
252	Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 2017, 10, .	1.6	53

#	Article	IF	CITATIONS
253	Itch/ \hat{I}^2 -arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nature Communications, 2018, 9, 976.	5.8	53
254	Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathologica, 2021, 141, 85-100.	3.9	52
255	Histology and Molecular Pathology of Pediatric Brain Tumors. Journal of Child Neurology, 2009, 24, 1375-1386.	0.7	51
256	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.4	51
257	Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clinical Sarcoma Research, 2017, 7, 9.	2.3	51
258	Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. European Journal of Cancer, 2019, 114, 27-35.	1.3	51
259	Primary intracranial sarcomas with DICER1 mutation often contain prominent eosinophilic cytoplasmic globules and can occur in the setting of neurofibromatosis type 1 . Acta Neuropathologica, 2019 , 137 , 521 - 525 .	3.9	51
260	Diffuse glioneuronal tumour with oligodendrogliomaâ€like features and nuclear clusters (DGONC) – a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. Neuropathology and Applied Neurobiology, 2020, 46, 422-430.	1.8	51
261	Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science, 2021, 373, .	6.0	51
262	DNA methylation profiling distinguishes Ewing-like sarcoma with EWSR1–NFATc2 fusion from Ewing sarcoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1273-1281.	1.2	50
263	Germline <i>GPR161</i> Mutations Predispose to Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 43-50.	0.8	50
264	Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathologica, 2020, 139, 243-257.	3.9	50
265	Overcoming multiple drug resistance mechanisms in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 57.	2.4	49
266	Genome-wide methylation profiling and copy number analysis in atypical fibroxanthomas and pleomorphic dermal sarcomas indicate a similar molecular phenotype. Clinical Sarcoma Research, 2019, 9, 2.	2.3	48
267	Genomic profiling of Acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia, 2017, 31, 2048-2056.	3.3	47
268	ETMR: a tumor entity in its infancy. Acta Neuropathologica, 2020, 140, 249-266.	3.9	47
269	Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect <scp>Wnt</scp> activated tumours. Neuropathology and Applied Neurobiology, 2015, 41, 135-144.	1.8	46
270	Alternative lengthening of telomeres in childhood neuroblastoma from genome to proteome. Nature Communications, 2021, 12, 1269.	5.8	46

#	Article	IF	CITATIONS
271	Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro-Oncology, 2021, 23, 1360-1370.	0.6	46
272	ZFTA–RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discovery, 2021, 11, 2200-2215.	7.7	46
273	Transitioning from genotypes to epigenotypes: Why the time has come for medulloblastoma epigenomics. Neuroscience, 2014, 264, 171-185.	1.1	45
274	From class waivers to precision medicine in paediatric oncology. Lancet Oncology, The, 2017, 18, e394-e404.	5.1	45
275	YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathologica, 2020, 139, 215-218.	3.9	45
276	Infratentorial IDH-mutant astrocytoma is a distinct subtype. Acta Neuropathologica, 2020, 140, 569-581.	3.9	45
277	No Significant Cytotoxic Effect of the EZH2 Inhibitor Tazemetostat (EPZ-6438) on Pediatric Glioma Cells with Wildtype Histone 3 or Mutated Histone 3.3. Klinische Padiatrie, 2016, 228, 113-117.	0.2	44
278	Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro-Oncology, 2020, 22, 773-784.	0.6	44
279	Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study. Acta Neuropathologica, 2021, 141, 771-785.	3.9	44
280	Moyamoya-like vasculopathy (moyamoya syndrome) in children. Child's Nervous System, 2004, 20, 382-391.	0.6	43
281	Hedgehog-mediated regulation of PPAR \hat{I}^3 controls metabolic patterns in neural precursors and shh-driven medulloblastoma. Acta Neuropathologica, 2012, 123, 587-600.	3.9	43
282	The Shh Receptor Boc Promotes Progression of Early Medulloblastoma to Advanced Tumors. Developmental Cell, 2014, 31, 34-47.	3.1	43
283	Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells. Oncogene, 2017, 36, 5231-5242.	2.6	43
284	Sellar Region Atypical Teratoid/Rhabdoid Tumors (ATRT) in Adults Display DNA Methylation Profiles of the ATRT-MYC Subgroup. American Journal of Surgical Pathology, 2018, 42, 506-511.	2.1	43
285	Papillary glioneuronal tumor (PGNT) exhibits a characteristic methylation profile and fusions involving PRKCA. Acta Neuropathologica, 2019, 137, 837-846.	3.9	43
286	Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget, 2017, 8, 11460-11479.	0.8	43
287	Telomere dysfunction and chromothripsis. International Journal of Cancer, 2016, 138, 2905-2914.	2.3	42
288	Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathologica, 2019, 138, 827-835.	3.9	42

#	Article	IF	CITATIONS
289	The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants. Oncogene, 2015, 34, 1126-1140.	2.6	41
290	Nestin Expression Identifies Ependymoma Patients with Poor Outcome. Brain Pathology, 2012, 22, 848-860.	2.1	40
291	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	3.2	40
292	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	0.8	40
293	Papillary Tumor of the Pineal Region: A Distinct Molecular Entity. Brain Pathology, 2016, 26, 199-205.	2.1	39
294	Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro-Oncology, 2017, 19, 1607-1617.	0.6	39
295	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	7.7	39
296	Comparative integrated molecular analysis of intraocular medulloepitheliomas and central nervous system embryonal tumors with multilayered rosettes confirms that they are distinct nosologic entities. Neuropathology, 2015, 35, 538-544.	0.7	38
297	DNA-methylation profiling discloses significant advantages over NanoString method for molecular classification of medulloblastoma. Acta Neuropathologica, 2017, 134, 965-967.	3.9	38
298	Functional Precision Medicine Identifies New Therapeutic Candidates for Medulloblastoma. Cancer Research, 2020, 80, 5393-5407.	0.4	38
299	The Role of Chromatin Remodeling in Medulloblastoma. Brain Pathology, 2013, 23, 193-199.	2.1	37
300	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	2.4	37
301	Myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle is defined by a recurrent PDGFRA p.K385 mutation and DNT-like methylation profile. Acta Neuropathologica, 2018, 136, 339-343.	3.9	37
302	Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities. Acta Neuropathologica Communications, 2019, 7, 163.	2.4	37
303	Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nature Communications, 2019, 10, 2400.	5.8	37
304	Loss of Smarc Proteins Impairs Cerebellar Development. Journal of Neuroscience, 2014, 34, 13486-13491.	1.7	36
305	Whole exome sequencing reveals that the majority of schwannomatosis cases remain unexplained after excluding SMARCB1 and LZTR1 germline variants. Acta Neuropathologica, 2014, 128, 449-452.	3.9	36
306	Voxel-wise radiogenomic mapping of tumor location with key molecular alterations in patients with glioma. Neuro-Oncology, 2018, 20, 1517-1524.	0.6	36

#	Article	IF	CITATIONS
307	RF_Purify: a novel tool for comprehensive analysis of tumor-purity in methylation array data based on random forest regression. BMC Bioinformatics, 2019, 20, 428.	1.2	36
308	Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathologica, 2021, 141, 605-617.	3.9	36
309	PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. Acta Neuropathologica, 2021, 142, 841-857.	3.9	36
310	Pediatric Gliomas. Recent Results in Cancer Research, 2009, 171, 67-81.	1.8	35
311	Arhgap36-dependent activation of Gli transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11061-11066.	3.3	35
312	Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma. Developmental Cell, 2018, 44, 709-724.e6.	3.1	35
313	Proteomic analysis of Medulloblastoma reveals functional biology with translational potential. Acta Neuropathologica Communications, 2018, 6, 48.	2.4	35
314	The \hat{I}^2 -catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner. Oncotarget, 2017, 8, 27300-27313.	0.8	35
315	The Transcription Factor Evi-1 Is Overexpressed, Promotes Proliferation, and Is Prognostically Unfavorable in Infratentorial Ependymomas. Clinical Cancer Research, 2011, 17, 3631-3637.	3.2	34
316	Somatic mutations of <i>DICER1</i> and <i>KMT2D</i> are frequent in intraocular medulloepitheliomas. Genes Chromosomes and Cancer, 2016, 55, 418-427.	1.5	34
317	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	3.9	34
318	EGFL7 enhances surface expression of integrin \hat{l}_{\pm} ₅ \hat{l}^2 ₁ to promote angiogenesis in malignant brain tumors. EMBO Molecular Medicine, 2018, 10, .	3.3	33
319	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	3.9	33
320	Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells. American Journal of Pathology, 2016, 186, 446-459.	1.9	32
321	Feasibility of real-time molecular profiling for patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation—the NCT Neuro Master Match (N2M2) pilot study. Neuro-Oncology, 2018, 20, 826-837.	0.6	32
322	<i>ZFTA</i> Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discovery, 2021, 11, 2216-2229.	7.7	32
323	Telomerase activation in posterior fossa group A ependymomas is associated with dismal prognosis and chromosome 1q gain. Neuro-Oncology, 2017, 19, 1183-1194.	0.6	31
324	DNA methylation profiling is a method of choice for molecular verification of pediatric WNT-activated medulloblastomas. Neuro-Oncology, 2019, 21, 214-221.	0.6	31

#	Article	IF	CITATIONS
325	DNA methylation based glioblastoma subclassification is related to tumoral T-cell infiltration and patient survival. Neuro-Oncology, 2021, 23, 240-250.	0.6	31
326	Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1. Acta Neuropathologica, 2021, 141, 281-290.	3.9	31
327	Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2016, 129, 109-121.	1.4	30
328	Update on molecular and genetic alterations in adult medulloblastoma. Memo - Magazine of European Medical Oncology, 2012, 5, 228-232.	0.3	29
329	Preliminary experience with personalized and targeted therapy for pediatric brain tumors. Pediatric Blood and Cancer, 2012, 59, 27-33.	0.8	29
330	<i>PID1</i> (<i>NYGGF4</i>), a New Growth-Inhibitory Gene in Embryonal Brain Tumors and Gliomas. Clinical Cancer Research, 2014, 20, 827-836.	3.2	29
331	No correlation between NF1 mutation position and risk of optic pathway glioma in 77 unrelated NF1 patients. Human Genetics, 2016, 135, 469-475.	1.8	29
332	Key Implications of Data Sharing in Pediatric Genomics. JAMA Pediatrics, 2018, 172, 476.	3.3	29
333	Duplications of KIAA1549 and BRAF screening by Droplet Digital PCR from formalin-fixed paraffin-embedded DNA is an accurate alternative for KIAA1549-BRAF fusion detection in pilocytic astrocytomas. Modern Pathology, 2018, 31, 1490-1501.	2.9	29
334	DNA methylation-based profiling of uterine neoplasms: a novel tool to improve gynecologic cancer diagnostics. Journal of Cancer Research and Clinical Oncology, 2020, 146, 97-104.	1.2	29
335	Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget, 2013, 4, 1280-1292.	0.8	29
336	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	5.8	29
337	Subgroup-specific alternative splicing in medulloblastoma. Acta Neuropathologica, 2012, 123, 485-499.	3.9	28
338	Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster. Nature Communications, 2014, 5, 4005.	5.8	28
339	Intraocular Medulloepitheliomas and Embryonal Tumors With Multilayered Rosettes of the Brain: Comparative Roles of LIN28A and C19MC. American Journal of Ophthalmology, 2015, 159, 1065-1074.e1.	1.7	28
340	Nestin Mediates Hedgehog Pathway Tumorigenesis. Cancer Research, 2016, 76, 5573-5583.	0.4	28
341	Epidemiology, molecular classification and WHO grading of ependymoma. Journal of Neurosurgical Sciences, 2017, 62, 46-50.	0.3	28
342	Clinicopathologic and molecular analysis of embryonal rhabdomyosarcoma of the genitourinary tract: evidence for a distinct DICER1-associated subgroup. Modern Pathology, 2021, 34, 1558-1569.	2.9	28

#	Article	IF	Citations
343	Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro-Oncology, 2022, 24, 153-165.	0.6	28
344	Embryonal tumor with abundant neuropil and true rosettes (ETANTR) with loss of morphological but retained genetic key features during progression. Acta Neuropathologica, 2011, 122, 787-790.	3.9	27
345	Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factorâ€thrombin crossâ€talk. Journal of Thrombosis and Haemostasis, 2014, 12, 1838-1849.	1.9	27
346	Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clinical Epigenetics, 2019, 11, 188.	1.8	27
347	Single cell derived mRNA signals across human kidney tumors. Nature Communications, 2021, 12, 3896.	5.8	27
348	Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma. Oncotarget, 2016, 7, 61860-61873.	0.8	27
349	MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study. Radiology, 2022, 304, 406-416.	3.6	27
350	Neogenin1 is a sonic hedgehog target in medulloblastoma and is necessary for cell cycle progression. International Journal of Cancer, 2014, 134, 21-31.	2.3	26
351	Meningiomas induced by low-dose radiation carry structural variants of NF2 and a distinct mutational signature. Acta Neuropathologica, 2017, 134, 155-158.	3.9	26
352	Fatal Outcome of European Tick-borne Encephalitis after Vaccine Failure. Frontiers in Neurology, 2017, 8, 119.	1.1	26
353	Small-molecule screen reveals synergy of cell cycle checkpoint kinase inhibitors with DNA-damaging chemotherapies in medulloblastoma. Science Translational Medicine, 2021, 13, .	5.8	26
354	Maturation Block in Childhood Cancer. Cancer Discovery, 2021, 11, 542-544.	7.7	25
355	Integrative gene network and functional analyses identify a prognostically relevant key regulator of metastasis in Ewing sarcoma. Molecular Cancer, 2022, 21, 1.	7.9	25
356	Stepwise accumulation of distinct genomic aberrations in a patient with progressively metastasizing ependymoma. Genes Chromosomes and Cancer, 2009, 48, 229-238.	1.5	24
357	A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma. Clinical Cancer Research, 2018, 24, 1355-1363.	3.2	24
358	DECIPHER pooled shRNA library screen identifies PP2A and FGFR signaling as potential therapeutic targets for diffuse intrinsic pontine gliomas. Neuro-Oncology, 2019, 21, 867-877.	0.6	24
359	INFORM2 NivEnt: The first trial of the INFORM2 biomarker driven phase I/II trial series: the combination of nivolumab and entinostat in children and adolescents with refractory high-risk malignancies. BMC Cancer, 2020, 20, 523.	1.1	24
360	Second series by the Italian Association of Pediatric Hematology and Oncology of children and adolescents with intracranial ependymoma: an integrated molecular and clinical characterization with a long-term follow-up. Neuro-Oncology, 2021, 23, 848-857.	0.6	24

#	Article	IF	Citations
361	Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. Acta Neuropathologica, 2021, 142, 179-189.	3.9	24
362	Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nature Communications, 2021, 12, 5530.	5.8	24
363	Accumulation of genomic aberrations during clinical progression of medulloblastoma. Acta Neuropathologica, 2008, 116, 383-390.	3.9	23
364	Molecular analysis of pediatric CNS-PNET revealed nosologic heterogeneity and potent diagnostic markers for CNS neuroblastoma with FOXR2-activation. Acta Neuropathologica Communications, 2021, 9, 20.	2.4	23
365	Molecular approaches to ependymoma. Current Opinion in Neurology, 2012, 25, 745-750.	1.8	22
366	Oncolytic effects of parvovirus Hâ€1 in medulloblastoma are associated with repression of master regulators of early neurogenesis. International Journal of Cancer, 2014, 134, 703-716.	2.3	22
367	Serpine2/PN-1 Is Required for Proliferative Expansion of Pre-Neoplastic Lesions and Malignant Progression to Medulloblastoma. PLoS ONE, 2015, 10, e0124870.	1.1	22
368	Reduced chromatin binding of MYC is a key effect of HDAC inhibition in MYC amplified medulloblastoma. Neuro-Oncology, 2021, 23, 226-239.	0.6	22
369	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	0.6	22
370	PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Child's Nervous System, 2011, 27, 1243-1249.	0.6	21
371	Emerging Insights into the Ependymoma Epigenome. Brain Pathology, 2013, 23, 206-209.	2.1	21
372	p19-INK4d inhibits neuroblastoma cell growth, induces differentiation and is hypermethylated and downregulated in MYCN-amplified neuroblastomas. Human Molecular Genetics, 2014, 23, 6826-6837.	1.4	21
373	Response in a child with a BRAF V600E mutated desmoplastic infantile astrocytoma upon retreatment with vemurafenib. Pediatric Blood and Cancer, 2018, 65, e26893.	0.8	21
374	Opposing Tumor-Promoting and -Suppressive Functions of Rictor/mTORC2 Signaling in Adult Glioma and Pediatric SHH Medulloblastoma. Cell Reports, 2018, 24, 463-478.e5.	2.9	21
375	Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro-Oncology, 2020, 22, 290-297.	0.6	21
376	Drivers underpinning the malignant transformation of giant cell tumour of bone. Journal of Pathology, 2020, 252, 433-440.	2.1	21
377	Infection as a cause of childhood leukemia: virus detection employing whole genome sequencing. Haematologica, 2017, 102, e179-e183.	1.7	20
378	Molecular characterization of medulloblastomas with extensive nodularity (MBEN). Acta Neuropathologica, 2018, 136, 303-313.	3.9	20

#	Article	IF	CITATIONS
379	Proteomic profiling of high risk medulloblastoma reveals functional biology. Oncotarget, 2015, 6, 14584-14595.	0.8	20
380	An essential role for p38 MAPK in cerebellar granule neuron precursor proliferation. Acta Neuropathologica, 2012, 123, 573-586.	3.9	19
381	Molecular dissection of ependymomas. Oncoscience, 2015, 2, 827-828.	0.9	19
382	Long-term survival in a case of ETANTR with histological features of neuronal maturation after therapy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 466, 603-607.	1.4	19
383	Newly Diagnosed Metastatic Intracranial Ependymoma in Children: Frequency, Molecular Characteristics, Treatment, and Outcome in the Prospective HIT Series. Oncologist, 2019, 24, e921-e929.	1.9	19
384	Local and systemic therapy of recurrent ependymoma in children and adolescents: short- and long-term results of the E-HIT-REZ 2005 study. Neuro-Oncology, 2021, 23, 1012-1023.	0.6	19
385	Rapid-CNS2: rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study. Acta Neuropathologica, 2022, 143, 609-612.	3.9	19
386	Epigenetic Silencing of DKK3 in Medulloblastoma. International Journal of Molecular Sciences, 2013, 14, 7492-7505.	1.8	18
387	Translating genomic medicine to the clinic: challenges and opportunities. Genome Medicine, 2019, 11, 9.	3.6	18
388	Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathologica, 2018, 135, 635-638.	3.9	17
389	FOXR2 Stabilizes MYCN Protein and Identifies Non– <i>MYCN</i> -Amplified Neuroblastoma Patients With Unfavorable Outcome. Journal of Clinical Oncology, 2021, 39, 3217-3228.	0.8	17
390	Intimal sarcomas and undifferentiated cardiac sarcomas carry mutually exclusive MDM2, MDM4, and CDK6 amplifications and share a common DNA methylation signature. Modern Pathology, 2021, 34, 2122-2129.	2.9	17
391	EZHIP: a new piece of the puzzle towards understanding pediatric posterior fossa ependymoma. Acta Neuropathologica, 2022, 143, 1-13.	3.9	17
392	Prognostic relevance of miRâ€124â€3p and its target <i>TP53INP1</i> in pediatric ependymoma. Genes Chromosomes and Cancer, 2017, 56, 639-650.	1.5	16
393	Biological material collection to advance translational research and treatment of children with CNS tumours: position paper from the SIOPE Brain Tumour Group. Lancet Oncology, The, 2018, 19, e419-e428.	5.1	16
394	Functional loss of a noncanonical BCOR–PRC1.1 complex accelerates SHH-driven medulloblastoma formation. Genes and Development, 2020, 34, 1161-1176.	2.7	16
395	GOPC:ROS1 and other ROS1 fusions represent a rare but recurrent drug target in a variety of glioma types. Acta Neuropathologica, 2021, 142, 1065-1069.	3.9	16
396	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13 , .	5.8	16

#	Article	IF	CITATIONS
397	SHH desmoplastic/nodular medulloblastoma and Gorlin syndrome in the setting of Down syndrome: case report, molecular profiling, and review of the literature. Child's Nervous System, 2016, 32, 2439-2446.	0.6	15
398	Integrating Tenascin-C protein expression and 1q25 copy number status in pediatric intracranial ependymoma prognostication: A new model for risk stratification. PLoS ONE, 2017, 12, e0178351.	1.1	15
399	<i>BRAF</i> V600E Status Alone Is Not Sufficient as a Prognostic Biomarker in Pediatric Low-Grade Glioma. Journal of Clinical Oncology, 2018, 36, 96-96.	0.8	15
400	From Sampling to Sequencing: A Liquid Biopsy Pre-Analytic Workflow to Maximize Multi-Layer Genomic Information from a Single Tube. Cancers, 2021, 13, 3002.	1.7	15
401	Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors. Brain Pathology, 2016, 26, 506-516.	2.1	14
402	InTAD: chromosome conformation guided analysis of enhancer target genes. BMC Bioinformatics, 2019, 20, 60.	1.2	14
403	Rapid and Sensitive Quantification of Osimertinib in Human Plasma Using a Fully Validated MALDI–IM–MS/MS Assay. Cancers, 2020, 12, 1897.	1.7	14
404	International Consensus on Minimum Preclinical Testing Requirements for the Development of Innovative Therapies For Children and Adolescents with Cancer. Molecular Cancer Therapeutics, 2021, 20, 1462-1468.	1.9	14
405	Non-random aneuploidy specifies subgroups of pilocytic astrocytoma and correlates with older age. Oncotarget, 2015, 6, 31844-31856.	0.8	14
406	Primary central nervous system sarcoma with <i>DICER1</i> mutationâ€"treatment results of a novel molecular entity in pediatric Peruvian patients. Cancer, 2022, 128, 697-707.	2.0	14
407	Novel oncogene amplifications in tumors from a family with Li–Fraumeni syndrome. Genes Chromosomes and Cancer, 2009, 48, 558-568.	1.5	13
408	DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis. Journal of Neuro-Oncology, 2012, 109, 415-423.	1.4	13
409	Transcriptional profiling of medulloblastoma with extensive nodularity (MBEN) reveals two clinically relevant tumor subsets with VSNL1 as potent prognostic marker. Acta Neuropathologica, 2020, 139, 583-596.	3.9	13
410	Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma $\hat{a} \in A$ Report From the HIT 2000 Trial. Advances in Radiation Oncology, 2020, 5, 1158-1169.	0.6	13
411	Rapid and Sensitive Drug Quantification in Tissue Sections Using Matrix Assisted Laser Desorption Ionization-Ion Mobility-Mass Spectrometry Profiling. Journal of the American Society for Mass Spectrometry, 2020, 31, 742-751.	1.2	13
412	A Cell-Based MAPK Reporter Assay Reveals Synergistic MAPK Pathway Activity Suppression by MAPK Inhibitor Combination in <i>BRAF</i> -Driven Pediatric Low-Grade Glioma Cells. Molecular Cancer Therapeutics, 2020, 19, 1736-1750.	1.9	13
413	Gain of 12p encompassing CCND2 is associated with gemistocytic histology in IDH mutant astrocytomas. Acta Neuropathologica, 2017, 133, 325-327.	3.9	12
414	Accurate calling of <i>KIAA1549â€BRAF</i> fusions from DNA of human brain tumours using methylation arrayâ€based copy number and gene panel sequencing data. Neuropathology and Applied Neurobiology, 2021, 47, 406-414.	1.8	12

#	Article	IF	CITATIONS
415	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	3.9	12
416	The pediatric precision oncology study INFORM: Clinical outcome and benefit for molecular subgroups Journal of Clinical Oncology, 2020, 38, LBA10503-LBA10503.	0.8	12
417	Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathologica Communications, 2022, 10, 5.	2.4	12
418	Receptor activator of nuclear factor kappaB ligand plays a nonredundant role in doxorubicin-induced apoptosis. Cancer Research, 2003, 63, 1772-5.	0.4	12
419	Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers, 2022, 14, 126.	1.7	12
420	Sorafenib Plus Valproic Acid for Infant Spinal Glioblastoma. Journal of Pediatric Hematology/Oncology, 2010, 32, 511-514.	0.3	11
421	Chordoid meningiomas can be sub-stratified into prognostically distinct DNA methylation classes and are enriched for heterozygous deletions of chromosomal arm 2p. Acta Neuropathologica, 2018, 136, 975-978.	3.9	11
422	MRI Features of Histologically Diagnosed Supratentorial Primitive Neuroectodermal Tumors and Pineoblastomas in Correlation with Molecular Diagnoses and Outcomes: A Report from the Children's Oncology Group ACNS0332 Trial. American Journal of Neuroradiology, 2019, 40, 1796-1803.	1.2	11
423	EORTC SPECTAâ€AYA: A unique molecular profiling platform for adolescents and young adults with cancer in Europe. International Journal of Cancer, 2020, 147, 1180-1184.	2.3	11
424	Rapid MALDI-MS Assays for Drug Quantification in Biological Matrices: Lessons Learned, New Developments, and Future Perspectives. Molecules, 2021, 26, 1281.	1.7	11
425	Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion. Advanced Science, 2021, 8, e2101923.	5.6	11
426	Target Actionability Review: a systematic evaluation of replication stress as a therapeutic target for paediatric solid malignancies. European Journal of Cancer, 2022, 162, 107-117.	1.3	11
427	Connect Four with Glioblastoma Stem Cell Factors. Cell, 2014, 157, 525-527.	13.5	10
428	Performance of HBsAg point-of-care tests for detection of diagnostic escape-variants in clinical samples. Journal of Clinical Virology, 2015, 69, 33-35.	1.6	10
429	Molecular tumor classification using DNA methylome analysis. Human Molecular Genetics, 2020, 29, R205-R213.	1.4	10
430	Pilocytic astrocytoma demethylation and transcriptional landscapes link bZIP transcription factors to immune response. Neuro-Oncology, 2020, 22, 1327-1338.	0.6	10
431	MEK and RAF inhibitors: time for a paradigm shift in the treatment of pediatric low-grade gliomas?. Neuro-Oncology, 2017, 19, 741-743.	0.6	9
432	Systematic identification of suspected anthelmintic benzimidazole metabolites using LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2018, 151, 151-158.	1.4	9

#	Article	IF	CITATIONS
433	Imaging Characteristics of Wingless Pathway Subgroup Medulloblastomas: Results from the German HIT/SIOP-Trial Cohort. American Journal of Neuroradiology, 2019, 40, 1811-1817.	1.2	9
434	Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) disclose similar epigenetic signatures but different transcriptional profiles. Acta Neuropathologica, 2019, 137, 1003-1015.	3.9	9
435	Posterior fossa pilocytic astrocytomas with oligodendroglial features show frequent FGFR1 activation via fusion or mutation. Acta Neuropathologica, 2020, 139, 403-406.	3.9	9
436	Notch Signaling between Cerebellar Granule Cell Progenitors. ENeuro, 2021, 8, ENEURO.0468-20.2021.	0.9	9
437	Treatment of embryonal tumors with multilayered rosettes with carboplatin/etoposide induction and high-dose chemotherapy within the prospective P-HIT trial. Neuro-Oncology, 2022, 24, 127-137.	0.6	9
438	TP53 codon 72 polymorphism may predict early tumour progression in paediatric pilocytic astrocytoma. Oncotarget, 2016, 7, 47918-47926.	0.8	9
439	Local and Systemic Therapy of Recurrent Medulloblastomas in Children and Adolescents: Results of the P-HIT-REZ 2005 Study. Cancers, 2022, 14, 471.	1.7	9
440	Absence of chromosome 19q13.41 amplification in a case of atypical teratoid/rhabdoid tumor with ependymoblastic differentiation. Acta Neuropathologica, 2011, 121, 283-285.	3.9	8
441	Molecular Diagnostics in Pediatric Brain Tumors: Impact on Diagnosis and Clinical Decision-Making — A Selected Case Series. Klinische Padiatrie, 2018, 230, 305-313.	0.2	8
442	Downregulation of miR $\hat{a} \in 326$ and its host gene $\hat{1}^2 \hat{a} \in a$ rrestin1 induces pro $\hat{a} \in a$ rrestivity of E2F1 and promotes medulloblastoma growth. Molecular Oncology, 2021, 15, 523-542.	2.1	8
443	An extracellular vesicle-related gene expression signature identifies high-risk patients in medulloblastoma. Neuro-Oncology, 2021, 23, 586-598.	0.6	8
444	Development of Randomized Trials in Adults with Medulloblastomaâ€"The Example of EORTC 1634-BTG/NOA-23. Cancers, 2021, 13, 3451.	1.7	8
445	Clinically Tractable Outcome Prediction of Non-WNT/Non-SHH Medulloblastoma Based on TPD52 IHC in a Multicohort Study. Clinical Cancer Research, 2022, 28, 116-128.	3.2	8
446	From glioblastoma to gangliocytoma: an unforeseen but welcome shift in biological behavior. Journal of Neurosurgery: Pediatrics, 2009, 4, 475-478.	0.8	7
447	Simple Estimation of Incident HIV Infection Rates in Notification Cohorts Based on Window Periods of Algorithms for Evaluation of Line-Immunoassay Result Patterns. PLoS ONE, 2013, 8, e71662.	1.1	7
448	SMAD dependent signaling plays a detrimental role in a fly model of SMARCB1-deficiency and the biology of atypical teratoid/rhabdoid tumors. Journal of Neuro-Oncology, 2017, 131, 477-484.	1.4	7
449	Two molecularly distinct atypical teratoid/rhabdoid tumors (or tumor components) occurring in an infant with rhabdoid tumor predisposition syndrome 1. Acta Neuropathologica, 2019, 137, 847-850.	3.9	7
450	Genomeâ€wide analysis of acute leukemia and clonally related histiocytic sarcoma in a series of three pediatric patients. Pediatric Blood and Cancer, 2020, 67, e28074.	0.8	7

#	Article	IF	CITATIONS
451	Systematic target actionability reviews of preclinical proof-of-concept papers to match targeted drugs to paediatric cancers. European Journal of Cancer, 2020, 130, 168-181.	1.3	7
452	Integrated molecular analysis of adult sonic hedgehog (SHH)-activated medulloblastomas reveals two clinically relevant tumor subsets with VEGFA as potent prognostic indicator. Neuro-Oncology, 2021, 23, 1576-1585.	0.6	7
453	Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro-Oncology, 2021, 23, 2028-2041.	0.6	7
454	Limitations of current <i>in vitro</i> models for testing the clinical potential of epigenetic inhibitors for treatment of pediatric ependymoma. Oncotarget, 2018, 9, 36530-36541.	0.8	7
455	Genetic and epigenetic characterization of posterior pituitary tumors. Acta Neuropathologica, 2021, 142, 1025-1043.	3.9	7
456	The age of adult pilocytic astrocytoma cells. Oncogene, 2021, 40, 2830-2841.	2.6	6
457	High-Resolution Cartography of the Transcriptome and Methylome Landscapes of Diffuse Gliomas. Cancers, 2021, 13, 3198.	1.7	6
458	Notch1 switches progenitor competence in inducing medulloblastoma. Science Advances, 2021, 7, .	4.7	6
459	Abstract 4347: Medulloblastoma comprises four distinct diseases. , 2010, , .		6
460	Systemic chemotherapy of pediatric recurrent ependymomas: results from the German HIT-REZ studies. Journal of Neuro-Oncology, 2021, 155, 193-202.	1.4	6
461	Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections. Pharmaceuticals, 2022, 15, 694.	1.7	6
462	GE-23 * ENHANCER HIJACKING ACTIVATES GFI1 FAMILY ONCOGENES IN MEDULLOBLASTOMA. Neuro-Oncology, 2014, 16, v101-v101.	0.6	5
463	Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS ONE, 2019, 14, e0210665.	1.1	5
464	An optimized workflow to improve reliability of detection of KIAA1549:BRAF fusions from RNA sequencing data. Acta Neuropathologica, 2020, 140, 237-239.	3.9	5
465	INFORM2 exploratory multinational phase I/II combination study of nivolumab and entinostat in children and adolescents with refractory high-risk malignancies: INFORM2 NivEnt Journal of Clinical Oncology, 2019, 37, TPS10065-TPS10065.	0.8	5
466	Gene expression profiling of Group 3 medulloblastomas defines a clinically tractable stratification based on KIRREL2 expression. Acta Neuropathologica, 2022, 144, 339-352.	3.9	5
467	BI-30 * CHARACTERIZATION OF L1CAM AS A CLINICAL MARKER FOR THE C11orf95-RELA FUSION IN SUPRATENTORIAL EPENDYMOMAS. Neuro-Oncology, 2014, 16, v30-v30.	0.6	4
468	<scp>P</scp> aired box gene 8 (<scp>PAX8</scp>) expression is associated with sonic hedgehog (<scp>SHH</scp>)/wingless int (<scp>WNT</scp>) subtypes, desmoplastic histology and patient survival in human medulloblastomas. Neuropathology and Applied Neurobiology, 2015, 41, 165-179.	1.8	4

#	Article	IF	Citations
469	Cancer predisposition in pediatric neuro-oncologyâ€"practical approaches and ethical considerations. Neuro-Oncology Practice, 2021, 8, 526-538.	1.0	4
470	Umbrella protocol for phase I/IIa trials of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed glioblastoma without MGMT promoter methylation Neuro Master Match (N²M²) Journal of Clinical Oncology, 2016, 34, TPS2084-TPS2084.	0.8	4
471	Pediatric T-ALL type-1 and type-2 relapses develop along distinct pathways of clonal evolution. Leukemia, 2022, 36, 1759-1768.	3.3	4
472	Target actionability review to evaluate CDK4/6 as a therapeutic target in paediatric solid and brain tumours. European Journal of Cancer, 2022, 170, 196-208.	1.3	4
473	Cancer risk and tumour spectrum in 172 patients with a germline <i>SUFU</i> pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. Journal of Medical Genetics, 2022, 59, 1123-1132.	1.5	4
474	Medulloepithelioma with peculiar clinical presentation, stem cell phenotype and aberrant DNA-methylation profile. CNS Oncology, 2015, 4, 203-212.	1.2	3
475	LGG-02. A PHASE II PROSPECTIVE TRIAL OF SELUMETINIB IN CHILDREN WITH RECURRENT/PROGRESSIVE PEDIATRIC LOW-GRADE GLIOMA (PLGG) WITH A FOCUS UPON OPTIC PATHWAY/HYPOTHALAMIC TUMORS AND VISUAL ACUITY OUTCOMES: A PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) STUDY, PBTC-029B. Neuro-Oncology, 2019, 21, ii98-ii99.	0.6	3
476	Investigating the Central Nervous System Disposition of Actinomycin D: Implementation and Evaluation of Cerebral Microdialysis and Brain Tissue Measurements Supported by UPLC-MS/MS Quantification. Pharmaceutics, 2021, 13, 1498.	2.0	3
477	The genomic landscape of pediatric renal cell carcinomas. IScience, 2022, 25, 104167.	1.9	3
478	SMARCB1-deficient and SMARCA4-deficient Malignant Brain Tumors With Complex Copy Number Alterations and TP53 Mutations May Represent the First Clinical Manifestation of Li-Fraumeni Syndrome. American Journal of Surgical Pathology, 2022, 46, 1277-1283.	2.1	3
479	Reply to J.C. Lindsey et al. Journal of Clinical Oncology, 2011, 29, e348-e349.	0.8	2
480	Medulloblastoma: a potpourri of distinct entities. Acta Neuropathologica, 2012, 123, 463-464.	3.9	2
481	Integrative Genomic Analyses of Atypical Teratoid Rhabdoid Tumours (ATRTs). Cancer Genetics, 2014, 207, 447-448.	0.2	2
482	Gene-Tailored Treatments for Brain Disorders: Challenges and Opportunities. Public Health Genomics, 2016, 19, 170-177.	0.6	2
483	EPEN-06. YAP1 SUBGROUP SUPRATENTORIAL EPENDYMOMA REQUIRES TEAD AND NUCLEAR FACTOR I-MEDIATED TRANSCRIPTIONAL PROGRAMS FOR TUMORIGENESIS. Neuro-Oncology, 2019, 21, ii78-ii78.	0.6	2
484	GENE-08. THE MNP 2.0 STUDY: PROSPECTIVE INTEGRATION OF DNA METHYLATION PROFILING IN CNS TUMOR DIAGNOSTICS. Neuro-Oncology, 2019, 21, ii82-ii82.	0.6	2
485	Molecular progression of SHH-activated medulloblastomas. Acta Neuropathologica, 2019, 138, 327-330.	3.9	2
486	Thrombospondin-1 mimetics are promising novel therapeutics for MYC-associated medulloblastoma. Neuro-Oncology Advances, 2021, 3, vdab002.	0.4	2

#	Article	IF	CITATIONS
487	ABCB1 inhibition provides a novel therapeutic target to block TWIST1-induced migration in medulloblastoma. Neuro-Oncology Advances, 2021, 3, vdab030.	0.4	2
488	<i>NTRK</i> Alterations in Pediatric High-Risk Malignancies Identified Through European Clinical Sequencing Programs Constitute Promising Drug Targets. JCO Precision Oncology, 2021, 5, 450-454.	1.5	2
489	Bioanalysis of selinexor in mouse plasma micro-samples utilizing UPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1176, 122781.	1.2	2
490	A systematic analysis of genetic interactions and their underlying biology in childhood cancer. Communications Biology, 2021, 4, 1139.	2.0	2
491	Important Requirements for the Selection of Internal Standards during the Development of Desorption/Ionization Assays for Drug Quantification in Biological Matrices—A Practical Example. Molecules, 2022, 27, 690.	1.7	2
492	Clinical and molecular characterization of isolated M1 disease in pediatric medulloblastoma: experience from the German HIT-MED studies. Journal of Neuro-Oncology, 2022, 157, 37-48.	1.4	2
493	MiR-1248: a new prognostic biomarker able to identify supratentorial hemispheric pediatric low-grade gliomas patients associated with progression. Biomarker Research, 2022, 10, .	2.8	2
494	ICGC PedBrain - dissecting the genomic complexity underlying medulloblastoma using whole-genome sequencing. BMC Proceedings, 2012, 6, .	1.8	1
495	Revealing the role of SGK1 in the dynamics of medulloblastoma using a mathematical model. Journal of Theoretical Biology, 2014, 354, 105-112.	0.8	1
496	Next-generation molecular diagnostics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 121-130.	1.0	1
497	Interrogating the enhancer landscape of intracranial ependymomas: perspectives for precision medicine. Expert Review of Precision Medicine and Drug Development, 2018, 3, 147-149.	0.4	1
498	PDTM-38. PEDIATRIC MENINGIOMAS ARE CHARACTERIZED BY DISTINCT METHYLATION PROFILES DIFFERENT FROM ADULT MENINGIOMAS. Neuro-Oncology, 2018, 20, vi212-vi212.	0.6	1
499	CRISPR-mediated Loss of Function Analysis in Cerebellar Granule Cells Using In Utero Electroporation-based Gene Transfer. Journal of Visualized Experiments, 2018, , .	0.2	1
500	MEDU-01. HDACi AND PLK1i ACT SYNERGISTICALLY IN MYC-AMPLIFIED MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii103-ii103.	0.6	1
501	Probing Medulloblastoma Initiation at the Single-Cell Level. Trends in Cancer, 2019, 5, 759-761.	3.8	1
502	GENE-12. ANAPLASTIC NEUROEPITHELIAL TUMOR WITH CONDENSED NUCLEI (ANTCON): A NOVEL BRAIN TUMOR ENTITY WITH RECURRENT NTRK FUSION. Neuro-Oncology, 2019, 21, ii83-ii83.	0.6	1
503	EPEN-03. ZFTA/C11ORF95 FUSIONS DRIVE SUPRATENTORIAL EPENDYMOMA VIA SHARED ONCOGENIC MECHANISMS. Neuro-Oncology, 2021, 23, i13-i14.	0.6	1
504	ETMR-03. THE ROLE OF FOXR2 IN PEDIATRIC BRAIN CANCER. Neuro-Oncology, 2020, 22, iii323-iii323.	0.6	1

#	Article	IF	CITATIONS
505	Clinical and molecular subgroups of ependymoma in adulthood: An analysis of the German Glioma Network Journal of Clinical Oncology, 2017, 35, 2038-2038.	0.8	1
506	EPEN-39. CLINICAL STRATIFIED TREATMENT OF LOCALIZED PEDIATRIC INTRACRANIAL EPENDYMOMA WITH COMBINED LOCAL IRRADIATION AND CHEMOTHERAPY WITHIN THE PROSPECTIVE, MULTICENTER E-HIT TRIAL –THE MOLECULAR SUBGROUP MATTERS. Neuro-Oncology, 2020, 22, iii315-iii316.	0.6	1
507	Predictive modeling of resistance to SMO-inhibition in a patient-derived orthotopic xenograft model of SHH medulloblastoma. Neuro-Oncology Advances, 2022, 4, vdac026.	0.4	1
508	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i107-i107.	0.6	1
509	LGG-14. LOGGIC (Low Grade Glioma in Children) Core BioClinical Data Bank: Establishment and added clinical value of an international molecular diagnostic registry for pediatric low-grade glioma patients. Neuro-Oncology, 2022, 24, i90-i90.	0.6	1
510	MEDB-04. Young children with metastatic medulloblastoma: frequent requirement for radiotherapy in children with non-WNT/non-SHH medulloblastoma despite highly intensified chemotherapy – Results of the MET-HIT2000-BIS4 trial. Neuro-Oncology, 2022, 24, i104-i104.	0.6	1
511	RARE-15. Astroblastoma, <i>MN1</i> altered comprises two molecularly and clinically distinct subgroups defined by the fusion partners <i>BEND2</i> and <i>CXXC5</i> . Neuro-Oncology, 2022, 24, i12-i13.	0.6	1
512	EPIGENOME ALTERATIONS DEFINE LETHAL CIMP POSITIVE EPENDYMOMAS OF INFANCY. Neuro-Oncology, 2014, 16, iii16-iii16.	0.6	0
513	GE-21 * DRASTIC GENOMIC DIVERGENCE OF RECURRENT MEDULLOBLASTOMA INVALIDATES TARGETED THERAPIES DISCOVERED AT DIAGNOSIS. Neuro-Oncology, 2014, 16, v100-v101.	0.6	O
514	EG-09 * EPIGENETIC PROFILING REVEALS A CpG HYPERMETHYLATION PHENOTYPE (CIMP) ASSOCIATED WITH WORSE PROGRESSION-FREE SURVIVAL IN MENINGIOMA. Neuro-Oncology, 2014, 16, v76-v77.	0.6	0
515	Guanine Nucleotide-Binding Protein \hat{l}_{\pm} Subunit Hypofunction in Children with Short Stature and Disproportionate Shortening of the 4th and 5th Metacarpals. Hormone Research in Paediatrics, 2014, 81, 196-203.	0.8	0
516	MPTH-26MOLECULAR REFINEMENT OF PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2015, 17, v144.1-v144.	0.6	0
517	Ependymoma. Molecular Pathology Library, 2015, , 67-75.	0.1	O
518	HG-68COMBINED ALTERATIONS IN MAPK PATHWAY GENES, CDKN2A/B AND ATRX CHARACTERIZE ANAPLASTIC PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2016, 18, iii63.2-iii63.	0.6	0
519	ATRT-24. CHROMATIN SEGMENTATION IN ATRT REVEALS AN IMPORTANT ROLE FOR RESIDUAL SWI/SNF MEMBERS. Neuro-Oncology, 2018, 20, i33-i33.	0.6	O
520	LGG-11. REGULATION OF ONCOGENE-INDUCED SENESCENCE IN PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2018, 20, i106-i106.	0.6	0
521	MBRS-12. INTERFERENCE WITH THE FUNCTION OF MYC IN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i130-i130.	0.6	O
522	MBCL-45. ROLE OF IRRADIATION IN RELAPSED MEDULLOBLASTOMA: A REPORT OF THE GERMAN MEDULLOBLASTOMA RELAPSE STUDIES. Neuro-Oncology, 2018, 20, i127-i127.	0.6	0

#	Article	IF	Citations
523	Modern Principles of CNS Tumor Classification. , 2018, , 117-129.		0
524	EPEN-07. OVEREXPRESSION AND MUTATIONS OF CXORF67 IN â€~INFANT-TYPE' POSTERIOR FOSSA TYPE-A (FEPENDYMOMAS. Neuro-Oncology, 2018, 20, i74-i74.	PFA) 6.6	0
525	ATRT-34. TARGETING PRIMARY CILIOGENESIS IN ATYPICAL TERATOID/RHABDOID TUMORS. Neuro-Oncology, 2018, 20, i35-i35.	0.6	O
526	A Mouse Ependymoma Model Provides Molecular Insights into Tumor Formation. Cell Reports, 2018, 23, 3699-3700.	2.9	0
527	MEDU-11. MOLECULAR CHARACTERIZATION OF ETMRs REVEALS A ROLE FOR R-LOOP MEDIATED CHROMOSOMAL INSTABILITY. Neuro-Oncology, 2019, 21, ii105-ii105.	0.6	0
528	GENE-13. PEDIATRIC MENINGIOMAS ARE CHARACTERIZED BY DISTINCT METHYLATION PROFILES DIFFERENT FROM ADULT MENINGIOMAS. Neuro-Oncology, 2019, 21, ii83-ii84.	0.6	0
529	ATRT-09. INTEGRATIVE ANALYSES OF GENE REGULATORY LANDSCAPES REVEAL RHABDOID TUMOR SUBGROUPS WITH POSSIBLE IMMUNE MODULATION THROUGH EPIGENETIC DYSREGULATION. Neuro-Oncology, 2019, 21, ii64-ii65.	0.6	O
530	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	12.5	0
531	ATRT-07. TARGETING PRIMARY CILIOGENESIS IN ATYPICAL TERATOID/RHABDOID TUMORS. Neuro-Oncology, 2019, 21, ii64-ii64.	0.6	0
532	EPEN-04. CXorf67 MIMICS ONCOGENIC HISTONE H3 K27M MUTATIONS AND FUNCTIONS AS INTRINSIC INHIBITOR OF PRC2 FUNCTION IN AGGRESSIVE POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2019, 21, ii78-ii78.	0.6	0
533	GENE-02. CHROMOSOME CONFORMATION ANALYSIS OF EPENDYMOMA IDENTIFIES PUTATIVE TUMOR DEPENDENCY GENES ACTIVATED BY DISTAL ONCOGENIC ENHANCERS. Neuro-Oncology, 2019, 21, ii80-ii81.	0.6	0
534	GENE-04. ESTABLISHING A MOLECULAR PROFILING SERVICE FOR CHILDREN'S CENTRAL NERVOUS SYSTEM TUMORS IN AUSTRALASIA – THE AUSTRALIAN AND NEW ZEALAND CHILDREN'S HAEMATOLOGY AND ONCOLOGY GROUP (ANZCHOG) AIM BRAIN PROJECT. Neuro-Oncology, 2019, 21, ii81-ii81.	0.6	0
535	GENE-06. DISTINCT MOLECULAR SUBGROUPS OF TUMORS OF THE PINEAL REGION CORRELATE WITH CLINICAL PARAMETERS AND GENETIC ALTERATIONS. Neuro-Oncology, 2019, 21, ii81-ii82.	0.6	0
536	LGG-13. PAPILLARY GLIONEURONAL TUMOR (PGNT) EXHIBITS A CHARACTERISTIC METHYLATION PROFILE AND MANDATORY FUSIONS INVOLVING PRKCA. Neuro-Oncology, 2019, 21, ii101-ii102.	0.6	0
537	MEDU-21. LOSS OF THE TRANSCRIPTIONAL CO-REPRESSOR BCOR LEADS TO OVEREXPRESSION OF THE GROWTH FACTOR IGF2 AND SHH MEDULLOBLASTOMA TUMOR FORMATION. Neuro-Oncology, 2019, 21, ii107-ii108.	0.6	0
538	Advances and Challenges in Pediatric and Childhood Cancers. Cancer Cell, 2020, 38, 429-432.	7.7	0
539	EMBR-01. CLASS I HDAC INHIBITORS AND PLK1 INHIBITORS SYNERGIZE IN MYC-AMPLIFIED MEDULLOBLASTOMA. Neuro-Oncology, 2021, 23, i5-i5.	0.6	O
540	EMBR-21. CLINICALLY TRACTABLE OUTCOME PREDICTION OF GROUP 3/4 MEDULLOBLASTOMA BASED ON TPD52 IMMUNOHISTOCHEMISTRY: A MULTICOHORT STUDY. Neuro-Oncology, 2021, 23, i10-i10.	0.6	0

#	Article	IF	CITATIONS
541	IMMU-14. COMPUTATIONAL DECONVOLUTION OF TUMOR-INFILTRATING IMMUNE COMPONENTS IN PEDIATRIC NERVOUS SYSTEM TUMORS. Neuro-Oncology, 2021, 23, i30-i30.	0.6	O
542	LGG-04. MULTIOMIC ANALYSIS OF MAPK PATHWAY ACTIVITY IN PEDIATRIC PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2021, 23, i31-i32.	0.6	0
543	TMOD-03. A NOVEL MB GR3 TRANSGENIC MOUSE MODEL IS GENERATED BY <i>MYCN</i> AND <i>P53</i> DEFECTS IN VENTRICULAR ZONE PROGENITORS Neuro-Oncology, 2021, 23, i36-i36.	0.6	O
544	LGG-06. COMPREHENSIVE GENOMIC CHARACTERIZATION AND INTEGRATED CLINICAL ANALYSIS OF LOW-GRADE GLIOMAS IN CHILDREN WITH NEUROFIBROMATOSIS TYPE 1. Neuro-Oncology, 2021, 23, i32-i32.	0.6	0
545	EPCT-06. PRECISION ONCOLOGY IN THE PEDIATRIC TARGETED THERAPY 2.0 PROGRAM. Neuro-Oncology, 2021, 23, i47-i48.	0.6	O
546	LGG-11. BH3-MIMETICS TARGETING BCL-XL SELECTIVELY IMPACT THE SENESCENT COMPARTMENT OF PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2021, 23, i33-i34.	0.6	0
547	The Early Treatment Response of the Clinically Challenging Group of Childhood T-ALL without NOTCH1 Mutations Is Signified by a Specific mRNA Gene Profile Blood, 2007, 110, 2789-2789.	0.6	O
548	Secretion of Angiogenic Proteins by Human Multipotent Mesenchymal Stromal Cells (MSC) under Hypoxic Culture Conditions and Clinical Application of MSC in Steroid Induced Osteonecrosis in Children Blood, 2007, 110, 3689-3689.	0.6	0
549	High-Resolution Genomic Profiling (array-CGH) of Childhood T-ALL Identifies Deletions at 6q15-16.1 as a Predictive Marker for Early Treatment Response Blood, 2008, 112, 1484-1484.	0.6	O
550	Progressively Metastasizing Ependymoma: Genomic Aberrations. , 2012, , 297-306.		0
551	Abstract 1313: Mutually exclusive somatic mutations in WNT pathway medulloblastomas reveal a critical interaction between DDX3X and SMARCA4., 2012, , .		0
552	Abstract LB-198: Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. , 2014, , .		0
553	Abstract 3089: (Epi)genetic profiling enables molecular re-classification of CNS-primitive neuroectodermal tumors. , 2014, , .		O
554	Abstract 3094: Epigenetic classification of ependymal brain tumors across age groups., 2014,,.		0
555	Abstract 2891: Landscape of infiltrating immune repertoire in pediatric solid tumors. , 2019, , .		O
556	Abstract 3646: (Epi-)genomic homogeneity in radiation-induced glioblastoma with recurrentPDGFRAamplification and loss ofCDKN2A/Bfollowing primary acute lymphatic leukemia and medulloblastoma., 2019,,.		0
557	Abstract 3660: A link between miRNAs and mRNA translation elongation: The let7-eEF2K axis in MYC-driven pediatric tumors adaptation to nutrient deprivation. , 2019, , .		O
558	Abstract SY09-01: A comprehensive European approach to precision pediatric cancer medicine. , 2020, , .		0

#	Article	IF	CITATIONS
559	EPEN-09. IMPACT OF MOLECULAR SUBGROUP ON OUTCOME FOR INFANTS & amp;lt;12 MONTHS WITH INTRACRANIAL EPENDYMOMA - GERMAN EXPERIENCE FROM HIT2000, INTERIM-2000-REGISTRY AND I-HIT-MED REGISTRY. Neuro-Oncology, 2020, 22, iii309-iii309.	0.6	0
560	QOL-13. NEUROCOGNITIVE OUTCOMES ACCORDING TO RISK-ADAPTED TREATMENT REGIMENS FOR CHILDREN OLDER THAN 4 WITH MEDULLOBLASTOMA AND POSTERIOR FOSSA EPENDYMOMA $\hat{a} \in \text{``RESULTS OF THE HIT2000 TRIAL.}$ Neuro-Oncology, 2020, 22, iii433-iii433.	0.6	0
561	EPEN-36. THE TREATMENT OUTCOME OF PAEDIATRIC SUPRATENTORIAL C11ORF95-RELA FUSED EPENDYMOMA: A COMBINED REPORT FROM E-HIT SERIES AND AUSTRALIAN NEW ZEALAND CHILDREN'S HAEMATOLOGY/ONCOLOGY GROUP. Neuro-Oncology, 2020, 22, iii315-iii315.	0.6	O
562	MBCL-11. TIME TO RADIOTHERAPY IMPACTS SURVIVAL IN PEDIATRIC AND ADOLESCENT NON-METASTATIC MEDULLOBLASTOMA TREATED BY UPFRONT RADIOTHERAPY – A REPORT FROM THE HIT 2000 TRIAL. Neuro-Oncology, 2020, 22, iii389-iii390.	0.6	0
563	HGG-56. EXTENSIVE MOLECULAR HETEROGENEITY WITHIN H3-/IDH-WILDTYPE PEDIATRIC GLIOBLASTOMA. Neuro-Oncology, 2020, 22, iii354-iii354.	0.6	O
564	ETMR-21. META-ANALYSIS OF PINEAL REGION TUMOURS DEMONSTRATES MOLECULAR SUBGROUPS WITH DISTINCT CLINICO-PATHOLOGICAL FEATURES: A CONSENSUS STUDY. Neuro-Oncology, 2020, 22, iii327-iii327.	0.6	0
565	EPEN-18. CROSS-SPECIES GENOMICS IDENTIFIES GLI2 AS AN ONCOGENE OF C11orf95 FUSION-POSITIVE SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2020, 22, iii311-iii311.	0.6	O
566	EPEN-44. EXTRACELLULAR VESICLES OF SUPRATENTORIAL EPENDYMOMA RELA MEDIATE INTERACTIONS WITH CELLS OF THE TUMOR MICROENVIRONMENT. Neuro-Oncology, 2020, 22, iii316-iii317.	0.6	0
567	MBRS-68. SINGLE NUCLEUS RNA-SEQUENCING DECIPHERS INTRATUMORAL HETEROGENEITY IN MEDULLOBLASTOMA WITH EXTENSIVE NODULARITY (MBEN). Neuro-Oncology, 2020, 22, iii410-iii410.	0.6	O
568	PÃ d iatrische Onkologie: Medical need – Medikamente fýr krebskranke Kinder. , 0, , .		0
569	Abstract 3496: Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. , 2019, , .		0
570	MODL-02. A novel <i>Cre</i> conditional <i>cMYC</i> shows traceable leptomeningeal dissemination Neuro-Oncology, 2022, 24, i168-i168.	0.6	0
571	RARE-12. Pineoblastoma of children and young adults in a national population: An analysis of the HIT-MED study cohort. Neuro-Oncology, 2022, 24, i11-i12.	0.6	0
572	HGG-50. Specific sensitivity of pediatric high-grade glioma with ATRX inactivation to PARP inhibitor combinations. Neuro-Oncology, 2022, 24, i73-i73.	0.6	0
573	PATH-08. DNA methylation profiling improves routine diagnostics of paediatric CNS tumours: a prospective population-based study. Neuro-Oncology, 2022, 24, i159-i160.	0.6	O
574	HGG-27. Understanding the role of PLAG family transcription factors in cortex development and tumorigenesis. Neuro-Oncology, 2022, 24, i66-i66.	0.6	0
575	MODL-04. Drug screening in Disorders with Abnormal DNA Damage Response/Repair (DADDR) and <i>in vivo </i> validation. Neuro-Oncology, 2022, 24, i168-i169.	0.6	0
576	MEDB-60. Medulloblastoma with extensive nodularity mimics cerebellar development and differentiates along the granular precursor lineage. Neuro-Oncology, 2022, 24, i120-i120.	0.6	0

#	Article	IF	CITATIONS
577	MEDB-38. Significance of CSF cytology and neurologic deterioration in relapsed medulloblastomas in the German HIT-REZ-97/-2005 Studies and the HIT-REZ-Register. Neuro-Oncology, 2022, 24, i113-i114.	0.6	O
578	OTHR-32. The Pediatric Targeted Therapy 2.0 registry: robust molecular diagnostics for precision oncology. Neuro-Oncology, 2022, 24, i154-i154.	0.6	0
579	PATH-13. Methylation analysis in the diagnosis of pediatric CNS tumors; a single center experience. Neuro-Oncology, 2022, 24, i161-i161.	0.6	0
580	MEDB-41. Identifying a subgroup of patients with early childhood sonic hedgehog-activated medulloblastoma with unfavorable prognosis after treatment with radiation-sparing regimens including intraventricular methotrexate. Neuro-Oncology, 2022, 24, i114-i115.	0.6	0
581	PATH-03. Clinically Tractable Outcome Prediction of Group 3/4 Medulloblastoma Based on TPD52 Immunohistochemistry: a Multicohort Study. Neuro-Oncology, 2022, 24, i158-i158.	0.6	O
582	HGG-11. Clinical characteristics and clinical evolution of a large cohort of pediatric patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Neuro-Oncology, 2022, 24, i61-i62.	0.6	0
583	MEDB-36. Clinical and molecular heterogeneity within <i>MYC</i> and <i>MYCN</i> amplified medulloblastoma. Neuro-Oncology, 2022, 24, i113-i113.	0.6	0
584	MEDB-15. Dynamic chromatin alteration induces oncogenic hijacking by essential transcriptional factors during SHH medulloblastoma tumorigenesis. Neuro-Oncology, 2022, 24, i107-i108.	0.6	0
585	MODL-07. DNA methylation-based biobank of murine models for pediatric tumors. Neuro-Oncology, 2022, 24, i169-i170.	0.6	0
586	EPEN-28. Oncogenic dependency of pediatric ependymomas on extracellular vesicle pathways. Neuro-Oncology, 2022, 24, i45-i45.	0.6	0
587	IMMU-04. Transcriptional analysis reveals distinct microenvironmental subgroups across pediatric nervous system tumors. Neuro-Oncology, 2022, 24, i81-i81.	0.6	0
588	HGG-61.Landscape of cancer predisposition in pediatric high-grade glioma. Neuro-Oncology, 2022, 24, i76-i76.	0.6	0
589	EPEN-09. Multi-omics characterization of the blood-brain barrier in molecular groups of ependymoma. Neuro-Oncology, 2022, 24, i40-i40.	0.6	0
590	DIPG-19. FOXR2 is an oncogenic driver across pediatric and adult cancers. Neuro-Oncology, 2022, 24, i21-i22.	0.6	0
591	PATH-11. Detection of genetic and epigenetic alterations in Liquid Biopsies from pediatric brain tumor patients. Neuro-Oncology, 2022, 24, i160-i161.	0.6	0
592	THER-01. Precision brain tumor therapy by AAV-mediated oncogene editing. Neuro-Oncology, 2022, 24, i185-i186.	0.6	0
593	MODL-01. Targeting replication stress in pediatric brain tumors. Neuro-Oncology, 2022, 24, i168-i168.	0.6	0
594	Clinical characteristics and outcome of a large cohort of patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Journal of Clinical Oncology, 2022, 40, 2052-2052.	0.8	0