Michelle Lawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003706/publications.pdf

Version: 2024-02-01

45 papers 1,148 citations

15 h-index 33 g-index

54 all docs

54 docs citations

54 times ranked 1994 citing authors

#	Article	IF	CITATIONS
1	Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 2015, 6, 8983.	5.8	296
2	Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7604-7609.	3.3	123
3	Differences between bisphosphonates in binding affinities for hydroxyapatite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 149-155.	1.6	102
4	Myeloma bone disease: pathogenesis, current treatments and future targets. British Medical Bulletin, 2014, 111, 117-138.	2.7	61
5	Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer. Journal of Oral Pathology and Medicine, 2019, 48, 803-809.	1.4	57
6	Mitotic quiescence, but not unique â€æstemness,―marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB Journal, 2015, 29, 3141-3150.	0.2	48
7	Inhibition of p38α Mitogen-Activated Protein Kinase Prevents the Development of Osteolytic Bone Disease, Reduces Tumor Burden, and Increases Survival in Murine Models of Multiple Myeloma. Cancer Research, 2007, 67, 4572-4577.	0.4	43
8	A review of current murine models of multiple myeloma used to assess the efficacy of therapeutic agents on tumour growth and bone disease. Bone, 2015, 77, 57-68.	1.4	38
9	New agents in the Treatment of Myeloma Bone Disease. Calcified Tissue International, 2018, 102, 196-209.	1.5	37
10	NOD/SCID-GAMMA Mice Are an Ideal Strain to Assess the Efficacy of Therapeutic Agents Used in the Treatment of Myeloma Bone Disease. PLoS ONE, 2015, 10, e0119546.	1.1	36
11	Geranylgeranyl transferase type II inhibition prevents myeloma bone disease. Biochemical and Biophysical Research Communications, 2008, 377, 453-457.	1.0	31
12	Soluble Rank Ligand Produced by Myeloma Cells Causes Generalised Bone Loss in Multiple Myeloma. PLoS ONE, 2012, 7, e41127.	1.1	28
13	Preventing and Repairing Myeloma Bone Disease by Combining Conventional Antiresorptive Treatment With a Bone Anabolic Agent in Murine Models. Journal of Bone and Mineral Research, 2019, 34, 783-796.	3.1	22
14	The Pharmacological Profile of a Novel Highly Potent Bisphosphonate, OX14 (1-Fluoro-2-(Imidazo-[1,2-α]Pyridin-3-yl)-Ethyl-Bisphosphonate). Journal of Bone and Mineral Research, 2017, 32, 1860-1869.	3.1	19
15	Targeting RANK/RANKL in the Treatment of Solid Tumours and Myeloma. Current Pharmaceutical Design, 2010, 16, 1272-1283.	0.9	17
16	The E3 ligase HUWE1 inhibition as a therapeutic strategy to target MYC in multiple myeloma. Oncogene, 2020, 39, 5001-5014.	2.6	17
17	TGFÎ ² Inhibition Stimulates Collagen Maturation to Enhance Bone Repair and Fracture Resistance in a Murine Myeloma Model. Journal of Bone and Mineral Research, 2019, 34, 2311-2326.	3.1	14
18	The P2RX7B splice variant modulates osteosarcoma cell behaviour and metastatic properties. Journal of Bone Oncology, 2021, 31, 100398.	1.0	14

#	Article	IF	Citations
19	Sostdc1: A soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells. Bone, 2019, 122, 82-92.	1.4	13
20	Targeting Tumour-Initiating Cells with TRAIL Based Combination Therapy Ensures Complete and Lasting Eradication of Multiple Myeloma Tumours In Vivo. PLoS ONE, 2012, 7, e35830.	1.1	13
21	Development of reagents to study the turkey's immune response: Identification and molecular cloning of turkey CD4, CD8I± and CD28. Developmental and Comparative Immunology, 2009, 33, 540-546.	1.0	12
22	Osteolytica: An automated image analysis software package that rapidly measures cancer-induced osteolytic lesions in in vivo models with greater reproducibility compared to other commonly used methods. Bone, 2016, 83, 9-16.	1.4	12
23	Reovirus-induced cell-mediated immunity for the treatment of multiple myeloma within the resistant bone marrow niche., 2021, 9, e001803.		12
24	Multiple myelomaâ€"A painful disease of the bone marrow. Seminars in Cell and Developmental Biology, 2021, 112, 49-58.	2.3	10
25	Low-dose methotrexate in myeloproliferative neoplasm models. Haematologica, 2017, 102, e336-e339.	1.7	9
26	ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo. PLoS ONE, 2018, 13, e0199517.	1,1	9
27	Differential Painâ€Related Behaviors and Bone Disease in Immunocompetent Mouse Models of Myeloma. JBMR Plus, 2020, 4, e10252.	1.3	9
28	JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice. Calcified Tissue International, 2020, 107, 72-85.	1.5	9
29	Bisphosphonate Therapy in the Treatment of Multiple Myeloma. Current Pharmaceutical Design, 2010, 16, 3028-3036.	0.9	8
30	Myeloma Bone Disease: The Osteoblast in the Spotlight. Journal of Clinical Medicine, 2021, 10, 3973.	1.0	7
31	The Use of Oncolytic Viruses in the Treatment of Multiple Myeloma. Cancers, 2021, 13, 5687.	1.7	6
32	Adhesion and Growth of Bone Marrow Stromal Cells on Modified Alginate Hydrogels. Tissue Engineering, 2004, 10, 1480-1491.	4.9	3
33	InÂvivo models used in studies of bone metastases. , 2022, , 35-53.		2
34	In vivo models used in studies of bone metastases. , 2015, , 503-518.		1
35	Antiresorptives., 2016,, 17-36.		1
36	Abstract 18: Evaluating the contribution of anti-myeloma immunity for the efficacy of oncolytic reovirus therapy. , 2017 , , .		1

#	Article	IF	CITATIONS
37	Myeloma-Specific Oncolytic Adenovirus Induces Significant Tumour Oncolysis In Vitro and In Vivo and Prevents Cell Line Regrowth. Blood, 2018, 132, 3213-3213.	0.6	1
38	Advances in murine models of breast cancer bone disease. , 0, , .		1
39	Role of The Osteoclast in Cancer. , 2020, , 180-200.		1
40	Soluble RANK ligand produced by myeloma cells contributes to generalised bone loss in multiple myeloma. Bone, 2009, 44, S162.	1.4	0
41	Targeting Free Light Chain (FLC) Secretion and the Unfolded Protein Response in Myeloma Cells Using Van, a Combination of Repurposed Drugs. Experimental Hematology, 2018, 64, S74-S75.	0.2	0
42	Biological relationship between bone and myeloma cells. , 2022, , 1005-1017.		0
43	In vivo Models Used in Studies of BoneÂMetastases. , 2010, , 347-363.		0
44	A novel antagonist of the canonical Wnt-signalling pathway, Sostdc1, is expressed in experimental models of myeloma and suppresses bone formation. Bone Abstracts, 0, , .	0.0	0
45	The pharmacological profile of a novel highly potent bisphosphonate, OX14 (1-fluoro-2-(imidazo-[1,2) Tj ETQq1 1 zoledronate in the treatment of myeloma bone disease in JJN3-NOD/SCID-[gamma] mice. Bone Abstracts, O	0.784314 0.0	1 rgBT /Overl O