Qiangzhong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003634/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides: Importance of controlling reaction pH and time. Food Chemistry, 2016, 192, 288-294.	4.2	126
2	Untargeted and targeted metabolomics strategy for the classification of strong aroma-type baijiu (liquor) according to geographical origin using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Food Chemistry, 2020, 314, 126098.	4.2	122
3	Sodium caseinate/flaxseed gum interactions at oil–water interface: Effect on protein adsorption and functions in oil-in-water emulsion. Food Hydrocolloids, 2015, 43, 137-145.	5.6	97
4	Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil–water interface. Food Hydrocolloids, 2011, 25, 921-927.	5.6	83
5	Effects of pretreatments on the structure and functional properties of okara protein. Food Hydrocolloids, 2019, 90, 394-402.	5.6	83
6	Sodium caseinate/carboxymethylcellulose interactions at oil–water interface: Relationship to emulsion stability. Food Chemistry, 2012, 132, 1822-1829.	4.2	79
7	Effect of xanthan gum on walnut protein/xanthan gum mixtures, interfacial adsorption, and emulsion properties. Food Hydrocolloids, 2018, 79, 391-398.	5.6	79
8	Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments. Food Hydrocolloids, 2019, 93, 167-175.	5.6	78
9	Influence of xanthan gum on physical characteristics of sodium caseinate solutions and emulsions. Food Hydrocolloids, 2013, 32, 123-129.	5.6	72
10	Sodium caseinate/xanthan gum interactions in aqueous solution: Effect on protein adsorption at the oil–water interface. Food Hydrocolloids, 2012, 27, 339-346.	5.6	70
11	Effect of xanthan gum on the physical properties and textural characteristics of whipped cream. Food Chemistry, 2009, 116, 624-628.	4.2	68
12	Effect of homogenisation and storage time on surface and rheology properties of whipping cream. Food Chemistry, 2012, 131, 748-753.	4.2	68
13	Pitfalls of using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to assess the radical scavenging activity of peptides: Its susceptibility to interference and low reactivity towards peptides. Food Research International, 2015, 76, 359-365.	2.9	56
14	Radical scavenging activities of Tyr-, Trp-, Cys- and Met-Gly and their protective effects against AAPH-induced oxidative damage in human erythrocytes. Food Chemistry, 2016, 197, 807-813.	4.2	56
15	Immobilisation of lecitase® ultra for production of diacylglycerols by glycerolysis of soybean oil. Food Chemistry, 2012, 134, 301-307.	4.2	53
16	Effect of sorbitan monostearate on the physical characteristics and whipping properties of whipped cream. Food Chemistry, 2013, 141, 1834-1840.	4.2	52
17	Stability of emulsion stabilized by low-concentration soybean protein isolate: Effects of insoluble soybean fiber. Food Hydrocolloids, 2019, 97, 105232.	5.6	50
18	Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocolloids, 2009, 23, 2168-2173.	5.6	46

#	Article	IF	CITATIONS
19	Comparison of two cooked vegetable aroma compounds, dimethyl disulfide and methional, in Chinese Baijiu by a sensory-guided approach and chemometrics. LWT - Food Science and Technology, 2021, 146, 111427.	2.5	45
20	Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate. Food Chemistry, 2017, 214, 347-353.	4.2	44
21	Influence of NaCl on the oil/water interfacial and emulsifying properties of walnut protein-xanthan gum. Food Hydrocolloids, 2017, 72, 73-80.	5.6	42
22	Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. Journal of Agricultural and Food Chemistry, 2020, 68, 7946-7954.	2.4	42
23	Antioxidant and antiâ€acetylcholinesterase activities of anchovy (<i>Coilia mystus</i>) protein hydrolysates and their memoryâ€improving effects on scopolamineâ€induced amnesia mice. International Journal of Food Science and Technology, 2017, 52, 504-510.	1.3	38
24	Physicochemical properties of peanut oil-based diacylglycerol and their derived oil-in-water emulsions stabilized by sodium caseinate. Food Chemistry, 2015, 184, 105-113.	4.2	36
25	pH-Driven formation of soy peptide nanoparticles from insoluble peptide aggregates and their application for hydrophobic active cargo delivery. Food Chemistry, 2021, 355, 129509.	4.2	32
26	Effect of sucrose ester concentration on the interfacial characteristics and physical properties of sodium caseinate-stabilized oil-in-water emulsions. Food Chemistry, 2014, 151, 506-513.	4.2	30
27	Modulating interfacial dilatational properties by electrostatic sodium caseinate and carboxymethylcellulose interactions. Food Hydrocolloids, 2016, 56, 303-310.	5.6	30
28	Role and properties of guar gum in sodium caseinate solution and sodium caseinate stabilized emulsion. Food Research International, 2012, 49, 545-552.	2.9	27
29	EFFECTS OF SODIUM CASEINATE AND WHEY PROTEINS ON WHIPPING PROPERTIES AND TEXTURE CHARACTERISTICS OF WHIPPED CREAM. Journal of Food Process Engineering, 2008, 31, 671-683.	1.5	26
30	Whipping properties and stability of whipping cream: The impact of fatty acid composition and crystallization properties. Food Chemistry, 2021, 347, 128997.	4.2	26
31	Formation and performance of high acyl gellan hydrogel affected by the addition of physical-chemical treated insoluble soybean fiber. Food Hydrocolloids, 2020, 101, 105526.	5.6	25
32	Adjustment of the structural and functional properties of okara protein by acid precipitation. Food Bioscience, 2020, 37, 100677.	2.0	25
33	Effect of alkaline pH on the physicochemical properties of insoluble soybean fiber (ISF), formation and stability of ISF-emulsions. Food Hydrocolloids, 2021, 111, 106188.	5.6	24
34	Formation and stability of Pickering emulsion gels by insoluble soy peptide aggregates through hydrophobic modification. Food Chemistry, 2022, 387, 132897.	4.2	23
35	Effects of sterilization conditions and milk protein composition on the rheological and whipping properties of whipping cream. Food Hydrocolloids, 2016, 52, 11-18.	5.6	22
36	Physicochemical, interfacial and emulsifying properties of insoluble soy peptide aggregate: Effect of homogenization and alkaline-treatment. Food Hydrocolloids, 2020, 109, 106125.	5.6	21

#	Article	IF	CITATIONS
37	Fabrication of Soy Protein Nanoparticles via Partial Enzymatic Hydrolysis and Their Role in Controlling Lipid Digestion of Oil-in-Water Emulsions. ACS Food Science & Technology, 2021, 1, 193-204.	1.3	20
38	pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D3. Food Chemistry, 2022, 383, 132489.	4.2	20
39	Effect of homogenization associated with alkaline treatment on the structural, physicochemical, and emulsifying properties of insoluble soybean fiber (ISF). Food Hydrocolloids, 2021, 113, 106516.	5.6	19
40	Analysis, occurrence, and potential sensory significance of tropical fruit aroma thiols, 3-mercaptohexanol and 4-methyl-4-mercapto-2-pentanone, in Chinese Baijiu. Food Chemistry, 2021, 363, 130232.	4.2	18
41	Effect of pH on okara protein-carboxymethyl cellulose interactions in aqueous solution and at oil-water interface. Food Hydrocolloids, 2021, 113, 106529.	5.6	17
42	Effect of sucrose ester S370 on interfacial layers and fat crystals network of whipped cream. Food Hydrocolloids, 2021, 113, 106541.	5.6	17
43	The effect of sucrose esters S1570 on partial coalescence and whipping properties. Food Hydrocolloids, 2022, 125, 107429.	5.6	17
44	Desirable characteristics of casein peptides with simultaneously enhanced emulsion forming ability and antioxidative capacity in O/W emulsion. Food Hydrocolloids, 2022, 131, 107812.	5.6	16
45	A novel preparation strategy of emulsion gel solely stabilized by alkaline assisted steam-cooking treated insoluble soybean fiber. Food Hydrocolloids, 2022, 129, 107646.	5.6	14
46	Unraveling the acetals as ageing markers of Chinese Highland Qingke Baijiu using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry combined with metabolomics approach. Food Quality and Safety, 2021, 5, .	0.6	12
47	Enhanced acidic stability of O/W emulsions by synergistic interactions between okara protein and carboxymethyl cellulose. LWT - Food Science and Technology, 2021, 146, 111439.	2.5	9
48	Frozen, chilled and spray dried emulsions for whipped cream: Influence of emulsion preservation approaches on product functionality. LWT - Food Science and Technology, 2015, 62, 287-293.	2.5	7
49	Evaluation of the Hydrolysis Specificity of an Aminopeptidase from <i>Bacillus licheniformis</i> SWJS33 Using Synthetic Peptides and Soybean Protein Isolate. Journal of Agricultural and Food Chemistry, 2017, 65, 167-173.	2.4	7
50	Rheology and stability of concentrated emulsions fabricated by insoluble soybean fiber with few combined-proteins: Influences of homogenization intensity. Food Chemistry, 2022, 383, 132428.	4.2	7
51	Carboxymethyl cellulose/okara protein influencing microstructure, rheological properties and stability of <scp>O/W</scp> emulsions. Journal of the Science of Food and Agriculture, 2021, 101, 3685-3692.	1.7	4
52	Effects of Glucose and Corn Syrup on the Physical Characteristics and Whipping Properties of Vegetable-Fat Based Whipped Creams. Foods, 2022, 11, 1195.	1.9	4
53	Emulsifying and whipping properties of mixing polysaccharide dispersions: effect of ratio between insoluble soybean fiber and hydroxypropyl methylcellulose. Journal of the Science of Food and Agriculture, 2022, 102, 6707-6717.	1.7	2