Hai-ying Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003404/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Core–Shell Magnetic Fe ₃ O ₄ @poly(<i>m</i> -Phenylenediamine) Particles for Chromium Reduction and Adsorption. Environmental Science & Technology, 2015, 49, 5654-5662.	10.0	339
2	Controllable Synthesis of Hierarchical Porous Fe ₃ O ₄ Particles Mediated by Poly(diallyldimethylammonium chloride) and Their Application in Arsenic Removal. ACS Applied Materials & Interfaces, 2013, 5, 12449-12459.	8.0	195
3	Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review. Catalysis Today, 2021, 375, 10-29.	4.4	134
4	Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chemistry, 2014, 16, 3926.	9.0	115
5	Facile synthesis of Fe 3 O 4 @Cu(OH) 2 composites and their arsenic adsorption application. Chemical Engineering Journal, 2016, 299, 15-22.	12.7	108
6	Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine). Journal of Hazardous Materials, 2013, 260, 789-795.	12.4	94
7	Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification. Journal of Hazardous Materials, 2020, 384, 121373.	12.4	86
8	Cu doped Fe ₃ O ₄ magnetic adsorbent for arsenic: synthesis, property, and sorption application. RSC Advances, 2015, 5, 50011-50018.	3.6	85
9	A Cu–m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon, 2015, 81, 748-757.	10.3	73
10	pH Manipulation: A Facile Method for Lowering Oxidation State and Keeping Good Yield of Poly(<i>m</i> -phenylenediamine) and Its Powerful Ag ⁺ Adsorption Ability. Langmuir, 2011, 27, 13729-13738.	3.5	69
11	Enhanced activation of persulfate by nitric acid/annealing modified multi-walled carbon nanotubes via non-radical process. Chemosphere, 2019, 220, 514-522.	8.2	66
12	Highly Flexible and Porous Nanoparticle-Loaded Films for Dye Removal by Graphene Oxide–Fungus Interaction. ACS Applied Materials & Interfaces, 2016, 8, 34638-34647.	8.0	63
13	In-situ functionalization of poly(m-phenylenediamine) nanoparticles on bacterial cellulose for chromium removal. Chemical Engineering Journal, 2018, 344, 441-452.	12.7	61
14	Facile and large-scale synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu2+-assisted method with superior ability for dye adsorption. Journal of Materials Chemistry, 2012, 22, 18244.	6.7	60
15	Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina. Applied Surface Science, 2016, 369, 215-223.	6.1	58
16	Fluoride removal from water using alumina and aluminum-based composites: A comprehensive review of progress. Critical Reviews in Environmental Science and Technology, 2021, 51, 2051-2085.	12.8	58
17	Highly-dispersed Fe2O3@C electrode materials for Pb2+ removal by capacitive deionization. Carbon, 2019, 153, 12-20.	10.3	56
18	Fungus hyphae-supported alumina: An efficient and reclaimable adsorbent for fluoride removal from water Journal of Colloid and Interface Science, 2017, 496, 496-504	9.4	53

#	Article	IF	CITATIONS
19	Adsorption mechanism for removing different species of fluoride by designing of core-shell boehmite. Journal of Hazardous Materials, 2020, 394, 122555.	12.4	51
20	Hierarchical Porous Carbon from the Synergistic "Pore-on-Pore―Strategy for Efficient Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2020, 8, 1129-1136.	6.7	49
21	Two-Dimensional Titanium Carbides (Ti3C2Tx) Functionalized by Poly(m-phenylenediamine) for Efficient Adsorption and Reduction of Hexavalent Chromium. International Journal of Environmental Research and Public Health, 2020, 17, 167.	2.6	49
22	Effective adsorption of sulfate ions with poly(m-phenylenediamine) in aqueous solution and its adsorption mechanism. Transactions of Nonferrous Metals Society of China, 2013, 23, 243-252.	4.2	46
23	Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chemical Communications, 2013, 49, 9974.	4.1	43
24	Synergistic effect of nitrogen, sulfur-codoping on porous carbon nanosheets as highly efficient electrodes for capacitive deionization. Journal of Colloid and Interface Science, 2019, 550, 147-158.	9.4	43
25	3D Cationic Polymeric Network Nanotrap for Efficient Collection of Perrhenate Anion from Wastewater. Small, 2021, 17, e2007994.	10.0	42
26	Preparation of stable and high-efficient poly(m-phenylenediamine)/reduced graphene oxide composites for hexavalent chromium removal. Journal of Materials Science, 2019, 54, 383-395.	3.7	41
27	Selective removal of Clâ^ and Fâ^ from complex solution via electrochemistry deionization with bismuth/reduced graphene oxide composite electrode. Chemosphere, 2020, 251, 126319.	8.2	41
28	Porous and flexible membrane derived from ZIF-8-decorated hyphae for outstanding adsorption of Pb2+ ion. Journal of Colloid and Interface Science, 2020, 565, 465-473.	9.4	41
29	MOFs-based coating derived Me-ZIF-67@CuOx materials as low-temperature NO-CO catalysts. Chemical Engineering Journal, 2020, 381, 122757.	12.7	40
30	Dynamic proteome responses to sequential reduction of Cr(VI) and adsorption of Pb(II) by Pannonibacter phragmitetus BB. Journal of Hazardous Materials, 2020, 386, 121988.	12.4	39
31	Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations. Bioresource Technology, 2015, 185, 134-142.	9.6	38
32	Enhanced surface hydroxyl groups by using hydrogen peroxide on hollow tubular alumina for removing fluoride. Microporous and Mesoporous Materials, 2020, 297, 110051.	4.4	37
33	Facile and sustainable synthesis of slit-like microporous N-doped carbon with unexpected electrosorption performance. Chemical Engineering Journal, 2020, 396, 125249.	12.7	37
34	Simultaneous adsorption of As(III), Cd(II) and Pb(II) by hybrid bio-nanocomposites of nano hydroxy ferric phosphate and hydroxy ferric sulfate particles coating on Aspergillus niger. Chemosphere, 2019, 223, 551-559.	8.2	34
35	A review on fluoride adsorption using modified bauxite: Surface modification and sorption mechanisms perspectives. Journal of Environmental Chemical Engineering, 2020, 8, 104532.	6.7	34
36	Facile synthesis of one-dimensional self-assembly oligo(o-phenylenediamine) materials by ammonium persulfate in acidic solution. Materials Letters, 2010, 64, 1193-1196.	2.6	32

#	Article	IF	CITATIONS
37	In-situ synthesis of monodispersed Cu O heterostructure on porous carbon monolith for exceptional removal of gaseous Hg0. Applied Catalysis B: Environmental, 2020, 265, 118556.	20.2	32
38	Synthesis of hierarchical hollow MIL-53(Al)-NH2 as an adsorbent for removing fluoride: experimental and theoretical perspective. Environmental Science and Pollution Research, 2021, 28, 6886-6897.	5.3	31
39	Facile and large-scale synthesis of poly(m-phenylenediamine) nanobelts with high surface area and superior dye adsorption ability. RSC Advances, 2014, 4, 45244-45250.	3.6	28
40	Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil. Journal of Soils and Sediments, 2016, 16, 2430-2438.	3.0	27
41	Single-step synthesis of magnetic chitosan composites and application for chromate (Cr(VI)) removal. Journal of Central South University, 2016, 23, 317-323.	3.0	27
42	Nano-functionalized filamentous fungus hyphae with fast reversible macroscopic assembly & disassembly features. Chemical Communications, 2015, 51, 8524-8527.	4.1	26
43	Carbon Nanoarchitectonics with Bi Nanoparticle Encapsulation for Improved Electrochemical Deionization Performance. ACS Applied Materials & Interfaces, 2022, 14, 13177-13185.	8.0	26
44	Preparation of 2D carbon ribbon/Al2O3 and nitrogen-doped carbon ribbon/Al2O3 by using MOFs as precursors for removing high-fluoride water. Transactions of Nonferrous Metals Society of China, 2021, 31, 2174-2188.	4.2	25
45	Enhanced adsorption-coupled reduction of hexavalent chromium by 2D poly(m-phenylenediamine)-functionalized reduction graphene oxide. Environmental Science and Pollution Research, 2019, 26, 31099-31110.	5.3	23
46	Simultaneous immobilization of Pb, Cd and As in soil by hybrid iron-, sulfate- and phosphate-based bio-nanocomposite: Effectiveness, long-term stability and bioavailablity/bioaccessibility evaluation. Chemosphere, 2021, 266, 128960.	8.2	23
47	Experimental and modeling studies for adsorbing different species of fluoride using lanthanum-aluminum perovskite. Chemosphere, 2021, 263, 128089.	8.2	23
48	Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F─ removal. Journal of Hazardous Materials, 2022, 430, 128401.	12.4	23
49	High conversion synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu-OH-assisted method and its superior ability toward Ag+ adsorption. Synthetic Metals, 2013, 176, 78-85.	3.9	22
50	Sustainable synthesis of hollow Cu-loaded poly(m-phenylenediamine) particles and their application for arsenic removal. RSC Advances, 2015, 5, 29965-29974.	3.6	21
51	Enhanced chloride removal of phosphorus doping in carbon material for capacitive deionization: Experimental measurement and theoretical calculation. Science of the Total Environment, 2020, 720, 137637.	8.0	21
52	Defluorination by ion exchange of SO42â^' on alumina surface: Adsorption mechanism and kinetics. Chemosphere, 2021, 273, 129678.	8.2	20
53	Application of polypyrrole-based adsorbents in the removal of fluoride: a review. RSC Advances, 2022, 12, 3505-3517.	3.6	20
54	An effective and scale-up self-assembly route to prepare the rigid and smooth oligo(o-phenylenediamine) microfibers in acidic solution by NaClO2. Materials Letters, 2010, 64, 2302-2305.	2.6	17

#	Article	IF	CITATIONS
55	A newly synthesized highly stable Ag/N-carbon electrode for enhanced desalination by capacitive deionization. Environmental Science: Nano, 2020, 7, 3007-3019.	4.3	17
56	Bismuthâ^'titanium alloy nanoparticle@porous carbon composite as efficient and stable Cl-storage electrode for electrochemical desalination. Separation and Purification Technology, 2022, 296, 121375.	7.9	17
57	Highly selective and sensitive polymers with fluorescent side groups for the detection of Hg 2+ ion. Materials Chemistry and Physics, 2017, 196, 262-269.	4.0	16
58	Synthesis of core-shell UiO-66-poly(m-phenylenediamine) composites for removal of hexavalent chromium. Environmental Science and Pollution Research, 2020, 27, 4115-4126.	5.3	16
59	High-yield synthesis of poly(m-phenylenediamine) hollow nanostructures by a diethanolamine-assisted method and their enhanced ability for Ag+ adsorption. New Journal of Chemistry, 2014, 38, 3984-3991.	2.8	15
60	Removal of Cr(III) and Cr(VI) from aqueous solution by adsorption on sugarcane pulp residue. Central South University, 2009, 16, 101-107.	0.5	14
61	Methanol-induced formation of 1D poly(m-phenylenediamine) by conventional chemical oxidative polymerization exhibiting superior Ag+ adsorption ability. RSC Advances, 2013, 3, 8660.	3.6	14
62	Highly efficient fluoride removal from water using 2D metal-organic frameworks MIL-53(Al) with rich Al and O adsorptive centers. Environmental Science and Ecotechnology, 2021, 8, 100123.	13.5	14
63	Synthesis of poly (m-phenylenediamine) with improved properties and superior prospect for Cr(VI) removal. Transactions of Nonferrous Metals Society of China, 2013, 23, 3490-3498.	4.2	13
64	Sustainable synthesis of Penicillium-derived highly conductive carbon film as superior binder-free electrode of lithium ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 3209-3214.	2.5	11
65	Organic frameworks induce synthesis and growth mechanism of well-ordered dumbbell-shaped ZnO particles. Materials Chemistry and Physics, 2019, 232, 129-136.	4.0	10
66	Macroscopic Poly Schiff Base-Coated Bacteria Cellulose with High Adsorption Performance. Polymers, 2020, 12, 714.	4.5	10
67	Enhanced short-cut nitrification in an airlift reactor by CaCO3 attachment on biomass under high bicarbonate condition. Biodegradation, 2016, 27, 131-144.	3.0	9
68	Stabilization mechanism of arsenic-sulfide slag by density functional theory calculation of arsenic-sulfide clusters. Journal of Hazardous Materials, 2021, 410, 124567.	12.4	9
69	Electrochemically-mediated capture and reduction of Cr(VI) by highly porous N-doped carbon spheres. Journal of Environmental Chemical Engineering, 2021, 9, 106067.	6.7	9
70	A Review of Battery Materials as CDI Electrodes for Desalination. Water (Switzerland), 2020, 12, 3030.	2.7	8
71	Structural modification of aluminum oxides for removing fluoride in water: crystal forms and metal ion doping. Environmental Technology (United Kingdom), 2022, 43, 3248-3261.	2.2	8
72	Preparation of magnetic Fe3O4@Cu/Ce microspheres for efficient catalytic oxidation co-adsorption of arsenic(III). Journal of Central South University, 2020, 27, 1176-1185.	3.0	7

#	Article	IF	CITATIONS
73	Synthesis and electrochemical behavior of monolayer-Ti3C2Tx for capacitive deionization. Journal of Central South University, 2022, 29, 359-372.	3.0	6
74	Hydrothermal synthesis of chemically stable cross-linked poly-Schiff base for efficient Cr(VI) removal. Journal of Materials Science, 2020, 55, 3259-3278.	3.7	5
75	Imidazolium-based cationic polymeric nanotraps for efficient removal of Cr2O72 Journal of Environmental Chemical Engineering, 2021, 9, 106357.	6.7	5
76	Fluorescent silica nanoparticles and glass surfaces for the detection and removal of Pd(II) ions. Journal of Materials Science, 2016, 51, 8502-8515.	3.7	4
77	Defluorination mechanism related to the activity of hydroxyl groups: A combined density functional theory calculations and experimental study. Chemical Engineering Journal, 2022, 437, 135342.	12.7	3
78	Arsenic Behaviors and Pollution Control Technologies in Aqueous Solution. , 2019, , 29-120.		0