Piotr M Korczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003130/publications.pdf

Version: 2024-02-01

687363 501196 29 935 13 28 citations h-index g-index papers 30 30 30 1117 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Concentration on demand – A microfluidic system for precise adjustment of the content of single droplets. Chemical Engineering Journal, 2022, 430, 132935.	12.7	4
2	Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells. Blood Advances, 2022, 6, 5415-5428.	5. 2	15
3	Integration of capillary–hydrodynamic logic circuitries for built-in control over multiple droplets in microfluidic networks. Lab on A Chip, 2021, 21, 1771-1778.	6.0	7
4	Direction of epithelial folding defines impact of mechanical forces on epithelial state. Developmental Cell, 2021, 56, 3222-3234.e6.	7.0	13
5	Impact of inertia and channel angles on flow distribution in microfluidic junctions. Microfluidics and Nanofluidics, 2020, 24, 1.	2.2	6
6	Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels. Nature Communications, 2019, 10, 2528.	12.8	47
7	Fixing the direction of droplets in a bifurcating microfluidic junction. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	7
8	Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures. Micromachines, 2018, 9, 469.	2.9	11
9	Simultaneous Measurement of Viscosity and Optical Density of Bacterial Growth and Death in a Microdroplet. Micromachines, 2018, 9, 251.	2.9	13
10	Scaling up the Throughput of Synthesis and Extraction in Droplet Microfluidic Reactors. Journal of Flow Chemistry, 2015, 5, 110-118.	1.9	10
11	Carboxymethylcellulose Adsorption on Molybdenite: The Effect of Electrolyte Composition on Adsorption, Bubble–Surface Collisions, and Flotation. Langmuir, 2014, 30, 11975-11984.	3.5	45
12	Microfluidic traps for hard-wired operations on droplets. Lab on A Chip, 2013, 13, 4096.	6.0	54
13	Simple modular systems for generation of droplets on demand. Lab on A Chip, 2013, 13, 3689.	6.0	29
14	Custom tailoring multiple droplets one-by-one. Lab on A Chip, 2013, 13, 4308.	6.0	11
15	Block-and-break generation of microdroplets with fixed volume. Biomicrofluidics, 2013, 7, 024108.	2.4	38
16	Microfluidic architectures for efficient generation of chemistry gradations in droplets. Microfluidics and Nanofluidics, 2013, 14, 235-245.	2.2	17
17	The structure and stability of multiple micro-droplets. Soft Matter, 2012, 8, 7269.	2.7	177
18	Geometrical and Electrical Properties of Indium Tin Oxide Clusters in Ink Dispersions. Langmuir, 2012, 28, 1523-1530.	3.5	1

#	Article	IF	CITATIONS
19	Discontinuous Transition in a Laminar Fluid Flow: A Change of Flow Topology inside a Droplet Moving in a Micron-Size Channel. Physical Review Letters, 2012, 108, 134501.	7.8	49
20	Turbulent mixing of clouds with the environment: Small scale two phase evaporating flow investigated in a laboratory by particle image velocimetry. Physica D: Nonlinear Phenomena, 2012, 241, 288-296.	2.8	8
21	Automated high-throughput generation of droplets. Lab on A Chip, 2011, 11, 3593.	6.0	37
22	Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab on A Chip, 2011, 11, 173-175.	6.0	87
23	Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab on A Chip, 2011, 11, 3603.	6.0	75
24	lonic polarization of liquid-liquid interfaces; dynamic control of the rate of electro-coalescence. Applied Physics Letters, 2011, 99, .	3.3	11
25	High-throughput automated droplet microfluidic system for screening of reaction conditions. Lab on A Chip, 2010, 10, 816.	6.0	106
26	Laboratory and modeling studies of cloud–clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling. New Journal of Physics, 2008, 10, 075020.	2.9	23
27	Analysis of turbulence in a micro-channel emulsifier. International Journal of Thermal Sciences, 2007, 46, 1126-1141.	4.9	16
28	Mixing of cloud and clear air in centimeter scales observed in laboratory by means of Particle Image Velocimetry. Atmospheric Research, 2006, 82, 173-182.	4.1	12
29	Turbulent Flow in a Micro-Channel. , 2006, , .		2