
Ireneusz Kownacki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5003115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of bifunctional disiloxanes <i>via</i> subsequent hydrosilylation of alkenes and alkynes. Chemical Communications, 2021, 57, 4504-4507.	4.1	15
2	Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It. Energies, 2021, 14, 1839.	3.1	4
3	An efficient methodology for the synthesis of unique functional polyolefins. Materials and Design, 2021, 206, 109801.	7.0	4
4	Synthesis and Properties of Epoxy Resin Modified with Novel Reactive Liquid Rubber-Based Systems. Industrial & Engineering Chemistry Research, 2021, 60, 2178-2186.	3.7	16
5	A library of new bifunctional alkenes obtained by a highly regiodivergent silylation of 1,5-hexadiene. RSC Advances, 2021, 11, 38956-38960.	3.6	1
6	A substituent-induced post-assembly modification cascade of a metallosupramolecular imine-type Co-complex. Dalton Transactions, 2020, 49, 12793-12797.	3.3	2
7	Simple catalytic approach to highly regioselective synthesis of monofunctionalized disiloxanes decorated with metalloids. Journal of Catalysis, 2020, 390, 103-108.	6.2	5
8	The effect of organosilicon modifier structure on the efficiency of the polybutadiene hydrosilylation process. Catalysis Science and Technology, 2020, 10, 7240-7248.	4.1	5
9	2-Thiohydantoin Moiety as a Novel Acceptor/Anchoring Group of Photosensitizers for Dye-Sensitized Solar Cells. Materials, 2020, 13, 2065.	2.9	15
10	Pt(0)-Catalysed synthesis of new bifunctional silanes. Dalton Transactions, 2020, 49, 7697-7700.	3.3	3
11	Microwave-Accelerated C,N-Cyclometalation as a Route to Chloro-Bridged Iridium(III) Binuclear Precursors of Phosphorescent Materials: Optimization, Synthesis, and Studies of the Iridium(III) Dimer Behavior in Coordinating Solvents. Inorganic Chemistry, 2020, 59, 9163-9176.	4.0	12
12	Synthesis and properties of hybrid materials obtained via additive cross-linking of liquid polybutadiene rubber with H-Si containing reagents. Polymer Testing, 2020, 87, 106516.	4.8	6
13	Effect of β-Ketoiminato Ancillary Ligand Modification on Emissive Properties of New Iridium Complexes. Inorganic Chemistry, 2019, 58, 15671-15686.	4.0	8
14	Transition metal-catalyzed hydrosilylation of polybutadiene – The effect of substituents at silicon on efficiency of silylfunctionalization process. Journal of Catalysis, 2019, 371, 27-34.	6.2	16
15	Pt-Catalyzed Hydrosilylation of 1,3-Diynes with Triorganosilanes: Regio- and Stereoselective Synthesis of Mono- or Bis-silylated Adducts. Journal of Organic Chemistry, 2019, 84, 2358-2365.	3.2	36
16	Quantum-chemical studies of homoleptic iridium(III) complexes in OLEDs: fac versus mer isomers. Journal of Molecular Modeling, 2019, 25, 154.	1.8	7
17	Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships between their chemical structures and antibacterial activity. RSC Advances, 2019, 9, 39367-39380.	3.6	19
18	An efficient method for synthesizing monofunctionalized derivatives of 1,1,3,3-tetramethyldisiloxane in ionic liquids as recoverable solvents for rhodium catalyst. Catalysis Communications, 2018, 108, 59-63.	3.3	13

#	Article	IF	CITATIONS
19	Synthesis of 5â€Substituted Benzo[<i>h</i>]quinoline Derivatives <i>via</i> Reactions Involving C(<i>sp</i> ²)â°Br Bond Activation. Advanced Synthesis and Catalysis, 2018, 360, 3331-3344.	4.3	8
20	Effect of fluorine substitution of the β-ketoiminate ancillary ligand on photophysical properties and electroluminescence ability of new iridium(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2018, 6, 8688-8708.	5.5	8
21	Microwave-assisted one-pot synthesis of new ionic iridium complexes of [Ir(bzq) ₂ (N^N)] ⁺ A ^{â^'} type and their selected electroluminescent properties. Dalton Transactions, 2017, 46, 9210-9226.	3.3	14
22	An efficient catalytic and solvent-free method for the synthesis of mono-organofunctionalized 1,1,3,3-tetramethyldisiloxane derivatives. Journal of Organometallic Chemistry, 2017, 846, 263-268.	1.8	22
23	Iridium-catalysed desilylative acylation of 1-alkenylsilanes. Journal of Molecular Catalysis A, 2017, 426, 75-78.	4.8	6
24	An Efficient Catalytic Route for the Synthesis of Silane Coupling Agents Based on the 1,1,3,3â€Tetramethyldisiloxane Core. European Journal of Inorganic Chemistry, 2017, 2017, 851-856.	2.0	19
25	A Simple Catalytic Route for AlkynÂ y lgermanes. European Journal of Inorganic Chemistry, 2016, 2016, 339-346.	2.0	7
26	Hydrosilylation vs. dehydrogenative silylation of styrene catalysed byÂiron(0) carbonyl complexes with multivinylsilicon ligands – Mechanistic implications. Journal of Organometallic Chemistry, 2015, 791, 58-65.	1.8	30
27	New protocol for one-pot synthesis of functionalized symmetrical 1,4-dialkyl- or 1,4-diaryl-1,3-diynes. Journal of Organometallic Chemistry, 2015, 775, 20-26.	1.8	3
28	Synthesis and structure of well-defined tricarbonyl iron(0) complexes with multivinylsilicon ligands. Journal of Organometallic Chemistry, 2014, 750, 132-139.	1.8	11
29	Iridium complex catalyzed germylative coupling reaction between alkynes and iodogermanes – a new route to alkynylgermanium and alkynylgermasilicon compounds. Dalton Transactions, 2014, 43, 16795-16799.	3.3	10
30	Hydrosilylation cross-linking of silicon fluids by a novel class of iron(0) catalysts. Applied Catalysis A: General, 2014, 486, 230-238.	4.3	32
31	A new and efficient route for the synthesis of alkynyl functionalized silicon derivatives. Tetrahedron Letters, 2014, 55, 548-550.	1.4	16
32	Iridium-Promoted Conversion of Chlorosilanes to Alkynyl Derivatives in a One-Pot Reaction Sequence. Organometallics, 2014, 33, 3051-3059.	2.3	12
33	Synthesis of new styrylarenes via Suzuki–Miyaura coupling catalysed by highly active, well-defined palladium catalysts. Dalton Transactions, 2013, 42, 15535.	3.3	21
34	Synthesis and crystal structures of binuclear iridium and rhodium complexes with symmetrical and unsymmetrical bulky siloxide bridges. Polyhedron, 2013, 53, 26-31.	2.2	2
35	New Bis(dialkynyldisiloxane)triplatinum(0) Cluster: Synthesis, Structure, and Catalytic Activity in Olefinâ€Hydrosilylation Reactions. ChemCatChem, 2012, 4, 1935-1937.	3.7	19
36	Silylative Coupling of Terminal Alkynes with Iodosilanes: New Catalytic Activation of sp-Hybridized Carbonâ^'Hydrogen Bonds. Organometallics, 2011, 30, 2539-2545.	2.3	27

IRENEUSZ KOWNACKI

#	Article	IF	CITATIONS
37	Silsesquioxyl rhodium(i) complexes - synthesis, structure and catalytic activity. Dalton Transactions, 2011, 40, 5073.	3.3	15
38	Tris(triorganosilyl)phosphites—New ligands controlling catalytic activity of Pt(0) complex in curing of silicone rubber. Applied Catalysis A: General, 2010, 380, 105-112.	4.3	22
39	Silylcarbonylation of styrenes catalyzed by iridium(I) siloxide complexes. Applied Catalysis A: General, 2010, 390, 94-101.	4.3	3
40	Catalysis of hydrosilylation by well-defined rhodium siloxide complexes immobilized on silica. Journal of Molecular Catalysis A, 2009, 310, 9-16.	4.8	26
41	Effect of triorganophosphites on platinum catalyzed curing of silicon rubber. Applied Catalysis A: General, 2009, 362, 106-114.	4.3	31
42	Catalysis of Hydrosilylation by Wellâ€Defined Surface Rhodium Siloxide Phosphine Complexes. ChemCatChem, 2009, 1, 304-310.	3.7	22
43	Synthesis, Characterization, and Catalytic Activity of a Wellâ€Defined Rhodium Siloxide Complex Immobilized on Silica. Angewandte Chemie - International Edition, 2008, 47, 541-544.	13.8	38
44	Synthesis, structure and catalytic activity of the first iridium(I) siloxide versus chloride complexes with 1,3-mesitylimidazolin-2-ylidene ligand. Journal of Organometallic Chemistry, 2008, 693, 321-328.	1.8	72
45	Catalytic activity of iridium siloxide complexes in cross-linking of silicones by hydrosilylation. Applied Catalysis A: General, 2007, 317, 53-57.	4.3	32
46	Late transition metal (Co, Rh, Ir)-siloxide complexes- synthesis, structure and application to catalysis. Special Publication - Royal Society of Chemistry, 2007, , 253-264.	0.0	6
47	Application of HS-SPME in the determination of potentially toxic organic compounds emitted from resin-based dental materials. Journal of Environmental Monitoring, 2006, 8, 377.	2.1	23
48	Synthesis of Functionalized Vinylgermanes through a New Ruthenium-Catalyzed Coupling Reaction. Chemistry - A European Journal, 2006, 12, 244-250.	3.3	44
49	A New Catalytic Route for the Activation of sp-Hybridized Carbon–Hydrogen Bonds. Angewandte Chemie - International Edition, 2006, 45, 8180-8184.	13.8	40
50	Vinyl- and Arylsilicon, germanium, and boron Compounds. , 2005, , 941-1023.		17
51	Hydroformylation and related reactions of vinylsilanes catalyzed by siloxide complexes of rhodium(I) and iridium(I). Journal of Molecular Catalysis A, 2005, 237, 246-253.	4.8	50
52	Synthesis of phenylene–silylene–ethylene polymers via transition metal complex catalyzed hydrosilylation polymerization. Applied Organometallic Chemistry, 2005, 19, 49-54.	3.5	25
53	Silylcarbonylation of Vinylsilanes Catalyzed by Iridium(I) Siloxide Complexes. Organometallics, 2005, 24, 6179-6183.	2.3	37
54	Alkoxy/siloxy group exchange in the system vinyltrialkoxysilane–iridium(i) siloxide complex. Chemical Communications, 2003, , 76-77.	4.1	9

IRENEUSZ KOWNACKI

#	Article	IF	CITATIONS
55	Synthesis, Structure, and Reactivity of [{Ir(cod)(μ-OSiMe3)}2] with Styrene and Vinylsilanes:  Catalytic Activation of the Vinylic Câ^'H Bond. Organometallics, 2002, 21, 3263-3270.	2.3	47
56	Synthesis and structure of the first monomeric iridium–siloxide complexes. Inorganica Chimica Acta, 2002, 334, 301-307.	2.4	19
57	Synthesis and structure of the first cobalt(I)–siloxide complex. Polyhedron, 2001, 20, 3015-3018.	2.2	18
58	Catalysis of hydrosilylation. Journal of Organometallic Chemistry, 2000, 597, 175-181.	1.8	51
59	Photochemically induced insertion of an olefin into the Co–Si bond; the key step for silylative coupling with vinylsubstituted organosilicon compounds. Inorganic Chemistry Communication, 1999, 2, 581-583.	3.9	22
60	Dehydrogenative coupling of styrene with trisubstituted silanes catalyzed by nickel complexes1Part XXXII in the series `Catalysis of Hydrosilylation', for Part XXXI see Ref. [1].1. Journal of Molecular Catalysis A, 1998, 135, 223-231.	4.8	20
61	Transformations of (Organo)silicon Compounds Catalyzed by Iridium Complexes. , 0, , 345-367.		1
62	Well-Defined Surface Rhodium Siloxide Complexes and Their Application to Catalysis. , 0, , 293-312.		3
63	Polycarbosilanes as Precursors of Novel Membrane Materials. , 0, , 641-644.		0