List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500282/publications.pdf Version: 2024-02-01

ZENC-EU XU

#	Article	IF	CITATIONS
1	Gibberellin Promotes Shoot Branching in the Perennial Woody Plant <i>Jatropha curcas</i> . Plant and Cell Physiology, 2015, 56, 1655-1666.	3.1	110
2	Benzyladenine Treatment Significantly Increases the Seed Yield of the Biofuel Plant Jatropha curcas. Journal of Plant Growth Regulation, 2011, 30, 166-174.	5.1	101
3	Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. Journal of Experimental Botany, 2011, 62, 3659-3669.	4.8	85
4	Determination of oil contents in Sacha inchi (Plukenetia volubilis) seeds at different developmental stages by two methods: Soxhlet extraction and time-domain nuclear magnetic resonance. Industrial Crops and Products, 2014, 56, 187-190.	5.2	72
5	Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biology, 2014, 14, 125.	3.6	58
6	Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Analytical Biochemistry, 2008, 374, 426-428.	2.4	56
7	Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant Journal, 2010, 61, 826-838.	5.7	56
8	Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR. International Journal of Molecular Sciences, 2013, 14, 24338-24354.	4.1	55
9	Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas. Scientific Reports, 2017, 7, 40844.	3.3	54
10	Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture. Journal of Biotechnology, 2011, 155, 164-172.	3.8	52
11	Ectopic Overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) Gene OsIAA4 in Rice Induces Morphological Changes and Reduces Responsiveness to Auxin. International Journal of Molecular Sciences, 2013, 14, 13645-13656.	4.1	52
12	Analysis of the transcriptional responses in inflorescence buds of Jatropha curcasexposed to cytokinin treatment. BMC Plant Biology, 2014, 14, 318.	3.6	52
13	Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Science, 2001, 161, 969-977.	3.6	51
14	Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Molecular Biology, 2005, 57, 629-643.	3.9	50
15	Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Scientific Reports, 2018, 8, 8844.	3.3	50
16	Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics, 2014, 15, 974.	2.8	49
17	A proteinase inhibitor II of Solanum americanum is expressed in phloem. Plant Molecular Biology, 2001, 47, 727-738.	3.9	48
18	Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) Induces Dwarfism and Smaller Leaves, Flowers and Fruits in Arabidopsis and Jatropha. Frontiers in Plant Science, 2017, 8, 2103.	3.6	46

#	Article	IF	CITATIONS
19	Comparative transcriptome analysis of axillary buds in response to the shoot branching regulators gibberellin A3 and 6-benzyladenine in Jatropha curcas. Scientific Reports, 2017, 7, 11417.	3.3	43
20	Two genes encoding protein phosphatase 2A catalytic subunits are differentially expressed in rice. Plant Molecular Biology, 2003, 51, 295-311.	3.9	40
21	The Nightshade Proteinase Inhibitor IIb Gene is Constitutively Expressed in Glandular Trichomes. Plant and Cell Physiology, 2006, 47, 1274-1284.	3.1	39
22	Identification and expression analysis of cytokinin metabolic genes <i>IPTs</i> , <i>CYP735A</i> and <i>CKXs</i> in the biofuel plant <i>Jatropha curcas</i> . PeerJ, 2018, 6, e4812.	2.0	39
23	Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR. International Journal of Molecular Sciences, 2015, 16, 12513-12530.	4.1	38
24	Serine proteinase inhibitor proteins: Exogenous and endogenous functions. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 100-108.	2.1	36
25	Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Science, 2011, 181, 696-700.	3.6	35
26	Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas. Frontiers in Plant Science, 2016, 7, 1953.	3.6	35
27	Inhibition of endogenous trypsin- and chymotrypsin-like activities in transgenic lettuce expressing heterogeneous proteinase inhibitor SaPIN2a. Planta, 2004, 218, 623-629.	3.2	33
28	Overexpression of a Weed (Solanum americanum) Proteinase Inhibitor in Transgenic Tobacco Results in Increased Glandular Trichome Density and Enhanced Resistance to Helicoverpa armigera and Spodoptera litura. International Journal of Molecular Sciences, 2009, 10, 1896-1910.	4.1	33
29	Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas. Scientific Reports, 2017, 7, 43090.	3.3	32
30	Benzyladenine treatment promotes floral feminization and fruiting in a promising oilseed crop Plukenetia volubilis. Industrial Crops and Products, 2014, 59, 295-298.	5.2	30
31	An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development. Scientific Reports, 2016, 6, 37306.	3.3	30
32	Identification and expression analysis of two small heat shock protein cDNAs from developing seeds of biodiesel feedstock plant Jatropha curcas. Plant Science, 2011, 181, 632-637.	3.6	29
33	A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. Journal of Plant Research, 2014, 127, 513-524.	2.4	29
34	Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas. Planta, 2015, 241, 823-836.	3.2	28
35	miR172 Regulates both Vegetative and Reproductive Development in the Perennial Woody Plant Jatropha curcas. Plant and Cell Physiology, 2018, 59, 2549-2563.	3.1	28
36	An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnology Reports, 2015, 9, 405-416.	1.5	25

#	Article	IF	CITATIONS
37	Identification and characterization of tetraploid and octoploid <i>Jatropha curcas</i> induced by colchicine. Caryologia, 2016, 69, 58-66.	0.3	25
38	Ectopic expression of <i>Jatropha curcas APETALA1</i> (<i>JcAP1</i>) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ, 2016, 4, e1969.	2.0	25
39	Characterization and in vitro mineralization function of a soluble protein complex P60 from the nacre of Pinctada fucata. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 148, 201-208.	1.6	24
40	G-box binding coincides with increased Solanum melongena cysteine proteinase expression in senescent fruits and circadian-regulated leaves. Plant Molecular Biology, 2003, 51, 9-19.	3.9	22
41	Identification and Characterization of the FT/TFL1 Gene Family in the Biofuel Plant Jatropha curcas. Plant Molecular Biology Reporter, 2015, 33, 326-333.	1.8	22
42	Plant Bioreactors for Pharmaceuticals. Biotechnology and Genetic Engineering Reviews, 2008, 25, 363-380.	6.2	21
43	Thidiazuron increases fruit number in the biofuel plant Jatropha curcas by promoting pistil development. Industrial Crops and Products, 2016, 81, 202-210.	5.2	19
44	Dehydroascorbate reductase and glutathione reductase play an important role in scavenging hydrogen peroxide during natural and artificial dehydration of Jatropha curcas seeds. Journal of Plant Biology, 2012, 55, 469-480.	2.1	18
45	Gibberellin Inhibits Floral Initiation in the Perennial Woody Plant Jatropha curcas. Journal of Plant Growth Regulation, 2018, 37, 999-1006.	5.1	18
46	Ectopic Expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J Causes Late-Flowering and Heterostylous Phenotypes in Arabidopsis but not in Jatropha. International Journal of Molecular Sciences, 2019, 20, 2165.	4.1	17
47	De novo transcriptome assembly and comparative analysis between male and benzyladenine-induced female inflorescence buds of Plukenetia volubilis. Journal of Plant Physiology, 2018, 221, 107-118.	3.5	16
48	De novo genome assembly and Hi-C analysis reveal an association between chromatin architecture alterations and sex differentiation in the woody plant Jatropha curcas. GigaScience, 2020, 9, .	6.4	16
49	Production and characterization of soluble human lysosomal enzyme α-iduronidase with high activity from culture media of transgenic tobacco BY-2 cells. Plant Science, 2009, 177, 668-675.	3.6	15
50	Flower-Specific Overproduction of Cytokinins Altered Flower Development and Sex Expression in the Perennial Woody Plant Jatropha curcas L International Journal of Molecular Sciences, 2020, 21, 640.	4.1	15
51	The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum. International Journal of Molecular Sciences, 2012, 13, 15162-15176.	4.1	14
52	De novo transcriptome assembly of the eight major organs of Sacha Inchi (Plukenetia volubilis) and the identification of genes involved in α-linolenic acid metabolism. BMC Genomics, 2018, 19, 380.	2.8	14
53	Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae). Plant Reproduction, 2020, 33, 21-34.	2.2	14
54	Efficiency of graft-transmitted JcFT for floral induction in woody perennial species of the <i>Jatropha</i> genus depends on transport distance. Tree Physiology, 2022, 42, 189-201.	3.1	14

#	Article	IF	CITATIONS
55	Genome sequence and characterization of a new virus infecting Mikania micrantha H.B.K Archives of Virology, 2008, 153, 1765-1770.	2.1	13
56	Characterization of the Sesbania rostrata Phytochelatin Synthase Gene: Alternative Splicing and Function of Four Isoforms. International Journal of Molecular Sciences, 2009, 10, 3269-3282.	4.1	13
57	Culture of Escherichia coli in SOC medium improves the cloning efficiency of toxic protein genes. Analytical Biochemistry, 2009, 394, 144-146.	2.4	12
58	Identification and differential expression of two dehydrin cDNAs during maturation of Jatropha curcas seeds. Biochemistry (Moscow), 2013, 78, 485-495.	1.5	11
59	Transcriptome analysis of two inflorescence branching mutants reveals cytokinin is an important regulator in controlling inflorescence architecture in the woody plant Jatropha curcas. BMC Plant Biology, 2019, 19, 468.	3.6	11
60	Overexpression of Type 1 and 2 Diacylglycerol Acyltransferase Genes (JcDGAT1 and JcDGAT2) Enhances Oil Production in the Woody Perennial Biofuel Plant Jatropha curcas. Plants, 2021, 10, 699.	3.5	11
61	Selection and Validation of Reference Genes for qRT-PCR Analysis in the Oil-Rich Tuber Crop Tiger Nut (Cyperus esculentus) Based on Transcriptome Data. International Journal of Molecular Sciences, 2021, 22, 2569.	4.1	10
62	Cloning and Characterization of an RNase-Related Protein Gene Preferentially Expressed in Rice Stems. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1041-1045.	1.3	9
63	A 64 kDa sucrose binding protein is membrane-associated and tonoplast-localized in developing mung bean seeds. Journal of Experimental Botany, 2009, 60, 629-639.	4.8	9
64	Studies on the sensitivity of Spirulina platensis to antibiotics and herbicide: relationship with selectable markers for genetic transformation. Bioresource Technology, 1999, 70, 89-93.	9.6	8
65	Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor. Plant Physiology and Biochemistry, 2007, 45, 757-766.	5.8	8
66	First Report of Root and Basal Stem Rot in Sacha Inchi (<i>Plukenetia volubilis</i>) Caused by <i>Fusarium oxysporum</i> in China. Plant Disease, 2018, 102, 242-242.	1.4	8
67	Chloroplast-Like Organelles Were Found in Enucleate Sieve Elements of Transgenic Plants Overexpressing a Proteinase Inhibitor. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2759-2765.	1.3	7
68	Isolation and characterization of the Jatropha curcas APETALA1 (JcAP1) promoter conferring preferential expression in inflorescence buds. Planta, 2016, 244, 467-478.	3.2	7
69	JCDB: a comprehensive knowledge base for Jatropha curcas, an emerging model for woody energy plants. BMC Genomics, 2019, 20, 958.	2.8	7
70	Silencing of the Ortholog of DEFECTIVE IN ANTHER DEHISCENCE 1 Gene in the Woody Perennial Jatropha curcas Alters Flower and Fruit Development. International Journal of Molecular Sciences, 2020, 21, 8923.	4.1	7
71	Effects of Mg2+ on the growth and DNase activity of Spirulina platensis, a cyanobacterium. Bioresource Technology, 1999, 67, 287-290.	9.6	6
72	The complete chloroplast genome sequence of the biofuel plant Sacha Inchi, <i>Plukenetia volubilis</i> . Mitochondrial DNA Part B: Resources, 2018, 3, 328-329.	0.4	6

#	Article	IF	CITATIONS
73	Comparative transcriptome analysis of gynoecious and monoecious inflorescences reveals regulators involved in male flower development in the woody perennial plant Jatropha curcas. Plant Reproduction, 2020, 33, 191-204.	2.2	5
74	Genetic Transformation and Transgenics of Jatropha curcas, a Biofuel Plant. , 2019, , 79-93.		3
75	Physico-chemical parameters influencing DNase activity of the cyanobacterium Spirulina platensis. Microbiological Research, 2000, 155, 59-63.	5.3	2
76	The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes. Molecular Biology Reports, 2010, 37, 2157-2162.	2.3	1
77	Fatty Acid Biosynthesis and Triacylglycerol Accumulation in the Biofuel Plant Jatropha curcas. , 2019, , 163-179.		1
78	First Report of Collar Rot in Purple Passion Fruit (<i>Passiflora edulis</i>) Caused by <i>Neocosmospora solani</i> in Yunnan Province, China. Plant Disease, 2021, 105, 3750.	1.4	1
79	Extended mining of the oil biosynthesis pathway in biofuel plant Jatropha curcas by combined analysis of transcriptome and gene interactome data. BMC Bioinformatics, 2021, 22, 409.	2.6	1
80	First Report of Powdery Mildew in <i>Jatropha curcas</i> Caused by <i>Erysiphe quercicola</i> in Yunnan Province, China. Plant Disease, 2019, 103, 2958.	1.4	1
81	An ortholog of the MADS-box gene SEPALLATA3 regulates stamen development in the woody plant Jatropha curcas. Planta, 2022, 255, 111.	3.2	1
82	Characterization of the bark storage protein gene (<i>JcBSP</i>) family in the perennial woody plant <i>Jatropha curcas</i> and the function of <i>JcBSP1</i> in <i>Arabidopsis thaliana</i> . PeerJ, 2022, 10, e12938.	2.0	0