Txomin Hermosilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5002757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current status of Landsat program, science, and applications. Remote Sensing of Environment, 2019, 225, 127-147.	4.6	586
2	Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science. Canadian Journal of Remote Sensing, 2014, 40, 192-212.	1.1	302
3	Land cover 2.0. International Journal of Remote Sensing, 2018, 39, 4254-4284.	1.3	261
4	A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment, 2017, 194, 303-321.	4.6	250
5	An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment, 2015, 158, 220-234.	4.6	243
6	Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment, 2015, 170, 121-132.	4.6	226
7	Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth, 2016, 9, 1035-1054.	1.6	175
8	Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sensing of Environment, 2018, 209, 90-106.	4.6	171
9	Disturbance-Informed Annual Land Cover Classification Maps of Canada's Forested Ecosystems for a 29-Year Landsat Time Series. Canadian Journal of Remote Sensing, 2018, 44, 67-87.	1.1	146
10	Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 2021, 260, 112477.	4.6	123
11	Forest recovery trends derived from Landsat time series for North American boreal forests. International Journal of Remote Sensing, 2016, 37, 138-149.	1.3	113
12	Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sensing of Environment, 2016, 176, 188-201.	4.6	105
13	Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 2018, 216, 697-714.	4.6	99
14	Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests, 2014, 5, 936-951.	0.9	92
15	Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data. Remote Sensing, 2011, 3, 1188-1210.	1.8	88
16	Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification. Computers and Geosciences, 2010, 36, 231-240.	2.0	85
17	Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sensing of Environment, 2018, 205, 32-45.	4.6	81
18	Using street based metrics to characterize urban typologies. Computers, Environment and Urban Systems, 2014, 44, 68-79.	3.3	75

#	Article	IF	CITATIONS
19	Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire, 2014, 23, 224.	1.0	73
20	Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sensing, 2014, 6, 7110-7135.	1.8	71
21	Non-linear fourth-order image interpolation for subpixel edge detection and localization. Image and Vision Computing, 2008, 26, 1240-1248.	2.7	65
22	Large Area Mapping of Annual Land Cover Dynamics Using Multitemporal Change Detection and Classification of Landsat Time Series Data. Canadian Journal of Remote Sensing, 2015, 41, 293-314.	1.1	65
23	Particulate Matter Emitted from Poultry and Pig Houses: Source Identification and Quantification. Transactions of the ASABE, 2011, 54, 629-642.	1.1	64
24	A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 2011, 76, 284-296.	3.7	63
25	Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. International Journal of Remote Sensing, 2018, 39, 5246-5264.	1.3	62
26	Assessing contextual descriptive features for plot-based classification of urban areas. Landscape and Urban Planning, 2012, 106, 124-137.	3.4	61
27	Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment, 2022, 268, 112780.	4.6	61
28	Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 121, 77-91.	4.9	60
29	Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data. Remote Sensing of Environment, 2018, 216, 262-275.	4.6	60
30	A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS ONE, 2018, 13, e0197218.	1.1	58
31	Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 2011, 4, 521-538.	1.6	53
32	Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 170-178.	1.4	51
33	Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126, 11-23.	4.9	44
34	Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sensing of Environment, 2019, 222, 65-77.	4.6	43
35	Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery. Forest Ecology and Management, 2020, 474, 118370.	1.4	43
36	A National Assessment of Wetland Status and Trends for Canada's Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sensing, 2018, 10, 1623.	1.8	42

#	Article	IF	CITATIONS
37	Estimation of biomass and volume of shrub vegetation using LiDAR and spectral data in a Mediterranean environment. Biomass and Bioenergy, 2012, 46, 710-721.	2.9	39
38	Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sensing of Environment, 2022, 271, 112904.	4.6	37
39	Prevalence of multiple forest disturbances and impact on vegetation regrowth from interannual Landsat time series (1985–2015). Remote Sensing of Environment, 2019, 233, 111403.	4.6	35
40	Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites. International Journal of Applied Earth Observation and Geoinformation, 2016, 44, 186-194.	1.4	34
41	Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems, 2019, 28, eR001.	0.1	34
42	Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sensing of Environment, 2022, 268, 112741.	4.6	34
43	Updating stand-level forest inventories using airborne laser scanning and Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 174-183.	1.4	33
44	Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 104-111.	1.4	32
45	Automated extraction of tree and plot-based parameters in citrus orchards from aerial images. Computers and Electronics in Agriculture, 2013, 90, 24-34.	3.7	31
46	Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. International Journal of Applied Earth Observation and Geoinformation, 2015, 34, 51-57.	1.4	31
47	Using semivariogram indices to analyse heterogeneity in spatial patterns in remotely sensed images. Computers and Geosciences, 2013, 50, 115-127.	2.0	30
48	Monitoring anthropogenic disturbance trends in an industrialized boreal forest with Landsat time series. Remote Sensing Letters, 2014, 5, 783-792.	0.6	30
49	Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure. Environmental Research Letters, 2018, 13, 084022.	2.2	30
50	Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models. Remote Sensing, 2018, 10, 1554.	1.8	29
51	Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sensing Letters, 2014, 5, 332-341.	0.6	28
52	Assessing variability in postâ€fire forest structure along gradients of productivity in the Canadian boreal using multiâ€source remote sensing. Journal of Biogeography, 2017, 44, 1294-1305.	1.4	28
53	Biomass status and dynamics over Canada's forests: Disentangling disturbed area from associated aboveground biomass consequences. Environmental Research Letters, 2020, 15, 094093.	2.2	28
54	Digital aerial photogrammetry for assessing cumulative spruce budworm defoliation and enhancing forest inventories at a landscape-level. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142, 1-11.	4.9	26

#	Article	IF	CITATIONS
55	Socio-geographic analysis of the causes of the 2006's wildfires in Galicia (Spain). Forest Systems, 2013, 22, 497.	0.1	24
56	Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sensing of Environment, 2020, 239, 111645.	4.6	23
57	Evaluating ICESat-2 for monitoring, modeling, and update of large area forest canopy height products. Remote Sensing of Environment, 2022, 271, 112919.	4.6	22
58	Barrenâ€ground caribou (<i>Rangifer tarandus groenlandicus</i>) behaviour after recent fire events; integrating caribou telemetry data with Landsat fire detection techniques. Global Change Biology, 2017, 23, 1036-1047.	4.2	21
59	Regional assessment of pan-Pacific urban environments over 25 years using annual gap free Landsat data. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 198-210.	1.4	19
60	Linking stand architecture with canopy reflectance to estimate vertical patterns of light-use efficiency. Remote Sensing of Environment, 2017, 194, 322-330.	4.6	19
61	Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario. Remote Sensing Letters, 2017, 8, 29-37.	0.6	19
62	Differentiation of Alternate Harvesting Practices Using Annual Time Series of Landsat Data. Forests, 2017, 8, 15.	0.9	19
63	The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102210.	1.4	18
64	Spatially-Explicit Prediction of Wildfire Burn Probability Using Remotely-Sensed and Ancillary Data. Canadian Journal of Remote Sensing, 2020, 46, 313-329.	1.1	16
65	Assessing spectral measures of post-harvest forest recovery with field plot data. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 102-114.	1.4	15
66	Discriminating treed and non-treed wetlands in boreal ecosystems using time series Sentinel-1 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 102007.	1.4	15
67	Satellite-based time series land cover and change information to map forest area consistent with national and international reporting requirements. Forestry, 2020, 93, 331-343.	1.2	15
68	Mapping dynamic peri-urban land use transitions across Canada using Landsat time series: Spatial and temporal trends and associations with socio-demographic factors. Computers, Environment and Urban Systems, 2021, 88, 101653.	3.3	15
69	Augmenting Landsat time series with Harmonized Landsat Sentinel-2 data products: Assessment of spectral correspondence. Science of Remote Sensing, 2021, 4, 100031.	2.2	15
70	Changing northern vegetation conditions are influencing barren ground caribou (<i>Rangifer) Tj ETQq0 0 0 rgB</i>	T /Overloci 1.4	k 10 Tf 50 142
71	Grizzly bear selection of recently harvested forests is dependent on forest recovery rate and landscape composition. Forest Ecology and Management, 2019, 449, 117459.	1.4	13

⁷²Land cover harmonization using Latent Dirichlet Allocation. International Journal of Geographical2.21372Information Science, 2021, 35, 348-374.2.213

#	Article	IF	CITATIONS
73	Integrated fire severity–land cover mapping using very-high-spatial-resolution aerial imagery and point clouds. International Journal of Wildland Fire, 2019, 28, 840.	1.0	13
74	Biophysical controls of increased tundra productivity in the western Canadian Arctic. Remote Sensing of Environment, 2021, 258, 112358.	4.6	12
75	Estimating changes in lichen mat volume through time and related effects on barren ground caribou (Rangifer tarandus groenlandicus) movement. PLoS ONE, 2017, 12, e0172669.	1.1	12
76	Monitoring pigmentâ€driven vegetation changes in a lowâ€Arctic tundra ecosystem using digital cameras. Ecosphere, 2018, 9, e02123.	1.0	11
77	Characterizing spatial-temporal patterns of landscape disturbance and recovery in western Alberta, Canada using a functional data analysis approach and remotely sensed data. Ecological Informatics, 2017, 39, 140-150.	2.3	10
78	Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101956.	1.4	10
79	An open science and open data approach for the statistically robust estimation of forest disturbance areas. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102663.	1.4	9
80	Using annual Landsat imagery to identify harvesting over a range of intensities for non-industrial family forests. Landscape and Urban Planning, 2019, 188, 143-150.	3.4	7
81	Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015). Scientific Reports, 2019, 9, 1323.	1.6	7
82	Historical Land Use as a Feature for Image Classification. Photogrammetric Engineering and Remote Sensing, 2011, 77, 377-387.	0.3	5
83	Change Detection in Peri-urban Areas Based on Contextual Classification. Photogrammetrie, Fernerkundung, Geoinformation, 2012, 2012, 359-370.	1.2	5
84	Spatial determination of traffic CO emissions within street canyons using inverse modelling. Atmospheric Pollution Research, 2019, 10, 1140-1147.	1.8	5
85	Assessing representation of remote sensing derived forest structure and land cover across a network of protected areas. Ecological Applications, 2022, 32, e2603.	1.8	4
86	Analysis of parcel-based image classification methods for monitoring the activities of the Land Bank of Galicia (Spain). Applied Geomatics, 2012, 4, 245-255.	1.2	3
87	A methodology to select particle morpho-chemical characteristics to use in source apportionment of particulate matter from livestock houses. Computers and Electronics in Agriculture, 2012, 81, 14-23.	3.7	3
88	Biophysical Determinants of Shifting Tundra Vegetation Productivity in the Beaufort Delta Region of Canada. Ecosystems, 2022, 25, 1435-1454.	1.6	3
89	Source identification and quantification of particulate matter emitted from livestock houses. , 2010, , .		1
90	Estimation of forest structural variables using small-footprint full-waveform LiDAR in a subtropical		1

forest, China. , 2014, , .

#	Article	IF	CITATIONS
91	Chronicling urbanization and vegetation changes using annual gap free Landsat composites from 1984 to 2012. , 2017, , .		1
92	A space-time data cube: Multi-temporal forest structure maps from landsat and lidar. , 2017, , .		1
93	EFFICIENCY OF CONTEXT-BASED ATTRIBUTES FOR LAND-USE CLASSIFICATION OF URBAN ENVIRONMENTS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXVIII-4/W19, 105-110.	0.2	1
94	Selection of Particle Characteristics to Distinguish Amongst Potential Sources of Particulate Matter in Poultry and Pigs. , 2011, , .		0
95	COMBINATION OF TERRASAR-X AND OPTICAL IMAGERY FOR LU/LC MAPPING USING AN OBJECT-BASED APPROACH. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XXXVIII-4/W19, 259-264.	0.2	Ο