Adam D Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5002752/publications.pdf Version: 2024-02-01

ΔΠΛΜ Π ΜΛΩΤΙΝ

#	Article	IF	CITATIONS
1	Recent progress in synthetic self-adjuvanting vaccine development. Biomaterials Science, 2022, 10, 4037-4057.	5.4	5
2	Ultra‣ow Molecular Weight Photoswitchable Hydrogelators. Angewandte Chemie, 2021, 133, 6838-6844.	2.0	8
3	Ultra‣ow Molecular Weight Photoswitchable Hydrogelators. Angewandte Chemie - International Edition, 2021, 60, 6764-6770.	13.8	30
4	A dendronised polymer architecture breaks the conventional inverse relationship between porosity and mechanical properties of hydrogels. Chemical Communications, 2021, 57, 773-776.	4.1	7
5	Decoupling the effects of hydrophilic and hydrophobic moieties at the neuron–nanofibre interface. Chemical Science, 2020, 11, 1375-1382.	7.4	6
6	Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides. Soft Matter, 2020, 16, 4800-4805.	2.7	5
7	Programmable enzymatic oxidation of tyrosine–lysine tetrapeptides. Journal of Materials Chemistry B, 2020, 8, 3104-3112.	5.8	9
8	Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water. Nanoscale, 2020, 12, 8262-8267.	5.6	10
9	Beyond Fmoc: a review of aromatic peptide capping groups. Journal of Materials Chemistry B, 2020, 8, 863-877.	5.8	53
10	Anthranilamide-based Short Peptides Self-Assembled Hydrogels as Antibacterial Agents. Scientific Reports, 2020, 10, 770.	3.3	26
11	Unraveling the Self-Assembly Modes in Multicomponent Supramolecular Gels Using Single-Crystal X-ray Diffraction. Chemistry of Materials, 2020, 32, 3517-3527.	6.7	21
12	Faceted polymersomes: a sphere-to-polyhedron shape transformation. Chemical Science, 2019, 10, 2725-2731.	7.4	29
13	Gel―and Solid‣tate‣tructure of Dialanine and Diphenylalanine Amphiphiles: Importance of Câ‹â‹â‹H Interactions in Gelation. ChemPhysChem, 2019, 20, 972-983.	2.1	17
14	Optically robust, highly permeable and elastic protein films that support dual cornea cell types. Biomaterials, 2019, 188, 50-62.	11.4	25
15	Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. Journal of the American Chemical Society, 2018, 140, 2869-2874.	13.7	117
16	Engineering Biocompatible Scaffolds through the Design of Elastinâ€Based Short Peptides. ChemPlusChem, 2018, 83, 47-52.	2.8	8
17	Enhanced Mechanical and Thermal Strength in Mixed-Enantiomers-Based Supramolecular Gel. Langmuir, 2018, 34, 12957-12967.	3.5	25
18	Glyoxylamide-based self-assembly hydrogels for sustained ciprofloxacin delivery. Journal of Materials Chemistry B, 2018, 6, 6089-6098.	5.8	16

Adam D Martin

#	Article	IF	CITATIONS
19	Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons. ACS Applied Materials & Interfaces, 2018, 10, 25127-25134.	8.0	16
20	The Use of Hydrogels as Biomimetic Materials for 3D Cell Cultures. Australian Journal of Chemistry, 2017, 70, 1.	0.9	6
21	Thermal annealing behaviour and gel to crystal transition of a low molecular weight hydrogelator. Soft Matter, 2017, 13, 1006-1011.	2.7	22
22	Ring-opened aminothienopyridazines as novel tau aggregation inhibitors. MedChemComm, 2017, 8, 1275-1282.	3.4	7
23	A Peptide Amphiphile Organogelator of Polar Organic Solvents. Scientific Reports, 2017, 7, 43668.	3.3	6
24	Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups. Scientific Reports, 2017, 7, 43947.	3.3	46
25	Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Threeâ€Đimensional Cell Culture of Tumor Spheroids. ChemPlusChem, 2017, 82, 383-389.	2.8	19
26	Tuning hydrogels through metal-based gelation triggers. Journal of Materials Chemistry B, 2017, 5, 9412-9417.	5.8	18
27	Design, synthesis, and characterisation of glyoxylamide-based short peptides as self-assembled gels. New Journal of Chemistry, 2017, 41, 13462-13471.	2.8	9
28	The effect of carboxylate position on the structure of a metal organic framework derived from cyclotriveratrylene. CrystEngComm, 2017, 19, 603-607.	2.6	10
29	Investigating the geometrical preferences of a flexible benzimidazolone-based linker in the synthesis of coordination polymers. Royal Society Open Science, 2017, 4, 171064.	2.4	2
30	Halogen bonding influences perylene-core twists in non-core substituted perylene tetraesters. CrystEngComm, 2016, 18, 4513-4517.	2.6	7
31	Self-assembly synthesis, structure, topology, and magnetic properties of a mononuclear Fe(<scp>iii</scp>)-violurate derivative: a combined experimental and theoretical study. Dalton Transactions, 2016, 45, 16166-16172.	3.3	18
32	A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior. Langmuir, 2016, 32, 2245-2250.	3.5	30
33	Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel. Soft Matter, 2016, 12, 2700-2707.	2.7	37
34	Biocompatible small peptide super-hydrogelators bearing carbazole functionalities. Journal of Materials Chemistry B, 2015, 3, 2277-2280.	5.8	37
35	Hirshfeld Surface Investigation of Structure-Directing Interactions within Dipicolinic Acid Derivatives. Crystal Growth and Design, 2015, 15, 1697-1706.	3.0	68
36	Chiral effects in peptide-substituted perylene imide nanofibres. Supramolecular Chemistry, 2015, 27, 746-756.	1.2	5

ADAM D MARTIN

#	Article	IF	CITATIONS
37	Macromolecular crowding and hydrophobic effects on Fmoc-diphenylalanine hydrogel formation in PEG : water mixtures. Journal of Materials Chemistry B, 2015, 3, 9269-9276.	5.8	18
38	Exceptionally strong hydrogels through self-assembly of an indole-capped dipeptide. Chemical Communications, 2014, 50, 15541-15544.	4.1	52
39	Spinning up the polymorphs of calcium carbonate. Scientific Reports, 2014, 4, 3616.	3.3	50
40	Synthesis and Toxicology of <i>p</i> â€Phosphonic Acid Calixarenes and Oâ€Alkylated Analogues as Potential Calixareneâ€Based Phospholipids. ChemPlusChem, 2012, 77, 308-313.	2.8	31
41	Multifunctional water-soluble molecular capsules based on p-phosphonic acid calix[5]arene. Chemical Communications, 2011, 47, 7353.	4.1	38
42	Pd-induced ordering of 2D Pt nanoarrays on phosphonated calix[4]arenes stabilised graphenes. Chemical Communications, 2011, 47, 5193.	4.1	16
43	Solvent and hydrogen confinement in molecular capsules—Hirshfeld surface and molecular simulation analysis. Chemical Communications, 2011, 47, 9882.	4.1	2
44	Multifunctional p-phosphonated calixarenes. Chemical Communications, 2011, 47, 9764.	4.1	49
45	Phosphonated calix[4]arene-based amphiphiles as scaffolds for fluorescent nano-fibres. Chemical Communications, 2011, 47, 7329.	4.1	18
46	Layered Calcium Structures of <i>p</i> -Phosphonic Acid <i>O</i> -Methyl-Calix[6]arene. Crystal Growth and Design, 2010, 10, 3211-3217.	3.0	15
47	Hirshfeld Surface Analysis of Substituted Phenols. Crystal Growth and Design, 2010, 10, 5302-5306.	3.0	91
48	Mapping out the diversity of interplay of O-alkylated calix[4]arenes. CrystEngComm, 2010, 12, 2666.	2.6	4
49	Photochemical generation of small silver nanoparticles involving multi-functional phosphonated calixarenes. New Journal of Chemistry, 2010, 34, 1834.	2.8	22
50	Variable Intercalation of Calcium Ions in Bilayers of Partially Deprotonated p-Phosphonic Acid Calix[4]arene. Crystal Growth and Design, 2009, 9, 3759-3764.	3.0	19
51	Aromatic Solvent Specific Induced Arrays of Calix[5]arenes. Crystal Growth and Design, 2009, 9, 4864-4871.	3.0	6