Jurgis Barkauskas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5002502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Graphite Intercalation Compounds with Sulfuric Acid. Crystals, 2022, 12, 421.	1.0	7
2	A novel electrochemical sensor based on thermally reduced graphene oxide for the sensitive determination of dopamine. Applied Surface Science, 2022, 592, 153257.	3.1	28
3	Reduced Graphene Oxide and Polyaniline Nanofibers Nanocomposite for the Development of an Amperometric Glucose Biosensor. Sensors, 2021, 21, 948.	2.1	47
4	Thermal reduction of graphite oxide in the presence of nitrogen-containing dyes. Carbon Letters, 2021, 31, 1097-1110.	3.3	5
5	Preparation and characterization of basic graphene-based catalysts and their application in biodiesel synthesis. Applied Surface Science, 2021, 554, 149588.	3.1	10
6	Thermal reduction of graphene oxide in the presence of carbon suboxide. Journal of Solid State Chemistry, 2021, 301, 122365.	1.4	5
7	Scanning electrochemical microscopy and electrochemical impedance spectroscopy-based characterization of perforated polycarbonate membrane modified by carbon-nanomaterials and glucose oxidase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126822.	2.3	11
8	A novel approach to prepare highly oxidized graphene oxide: structural and electrochemical investigations. Applied Surface Science, 2021, 567, 150883.	3.1	17
9	Evaluation of carbon-based nanostructures suitable for the development of black pigments and glazes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123718.	2.3	8
10	Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors. Materials Science and Engineering C, 2019, 98, 515-523.	3.8	25
11	Synthesis of Reduced Graphene Oxide with Adjustable Microstructure Using Regioselective Reduction in the Melt of Boric Acid: Relationship Between Structural Properties and Electrochemical Performance. Nanomaterials, 2018, 8, 889.	1.9	16
12	Graphene oxide-dye nanocomposites: effect of molecular structure on the quality of laser-induced graphene. Nanotechnology, 2018, 29, 445704.	1.3	3
13	Modified graphene-based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel. Chinese Journal of Catalysis, 2018, 39, 1633-1645.	6.9	34
14	Tailoring of graphite oxide electrical properties using laser irradiation. Proceedings of SPIE, 2017, , .	0.8	0
15	Study on the structure and electrocatalytic activity of graphene-based nanocomposite materials containing (SCN)n. Carbon, 2017, 118, 156-167.	5.4	11
16	Recent Advances in Laser Utilization in the Chemical Modification of Graphene Oxide and Its Applications. Advanced Optical Materials, 2016, 4, 37-65.	3.6	140
17	Formation peculiarities of iron (III) acetate: potential precursor for iron metal-organic frameworks (MOFs). Lithuanian Journal of Physics, 2016, 56, .	0.1	16
18	Nano-structured carbon materials for improved biosensing applications. Applied Surface Science, 2015, 334, 185-191.	3.1	5

JURGIS BARKAUSKAS

#	Article	IF	CITATIONS
19	Thermally reduced graphene oxide: The study and use for reagentless amperometric d-fructose biosensors. Talanta, 2015, 144, 1096-1103.	2.9	42
20	Amperometric Glucose Biosensor Based on Glucose Oxidase, 1,10-Phenanthroline-5,6-dione and Carbon Nanotubes. Journal of the Electrochemical Society, 2014, 161, H3064-H3069.	1.3	12
21	Adhesion of graphene oxide on a transparent PET substrate: a study focused on the optimization process. Journal of Adhesion Science and Technology, 2014, 28, 2016-2031.	1.4	2
22	Potential dependence of SERS spectra of reduced graphene oxide adsorbed on self-assembled monolayer at gold electrode. Chemical Physics Letters, 2013, 590, 141-145.	1.2	10
23	Modified SWCNTs for Reagentless Glucose Biosensor: Electrochemical and Mathematical Characterization. Electroanalysis, 2013, 25, 166-173.	1.5	6
24	Reduction of graphite oxide to graphene with laser irradiation. Carbon, 2013, 52, 574-582.	5.4	155
25	Nanocomposite films and coatings produced by interaction between graphite oxide and Congo red. Journal of Materials Science, 2012, 47, 5852-5860.	1.7	17
26	Laser Induced Graphite Oxide/Graphene Transformation. Journal of Laser Micro Nanoengineering, 2012, 7, 49-53.	0.4	15
27	Interaction between graphite oxide and Congo red in aqueous media. Carbon, 2011, 49, 5373-5381.	5.4	39
28	Surface acoustic wave response to ambient humidity in graphite oxide structures. Applied Physics Letters, 2011, 99, .	1.5	5
29	Fine Structure and Related Properties of the Assembleable Carbon Nanotubes Based Electrode for New Family of Biosensors with Chooseable Selectivity. Journal of Nanoscience and Nanotechnology, 2011, 11, 9003-9011.	0.9	4
30	A novel purification method of carbon nanotubes by high-temperature treatment with tetrachloromethane. Separation and Purification Technology, 2010, 71, 331-336.	3.9	22
31	pH-dependent water penetration through CNT sub-layers arranged on the polycarbonate membrane filters. Carbon, 2010, 48, 1858-1861.	5.4	13
32	Investigation of bioelectrocatalytic systems with PQQ-dependent GDH and carbonaceous materials. Biologija (Vilnius, Lithuania), 2010, 56, 83-87.	0.3	2
33	Synthesis of vapour-grown micrometer-scale carbon fibers. Mendeleev Communications, 2009, 19, 123-125.	0.6	О
34	In-Groove Carbon Nanotubes Device for SPME of Aromatic Hydrocarbons. Chromatographia, 2008, 67, 599-605.	0.7	21
35	Investigation of Distribution of Heavy Metals between Blood Plasma and Blood Cells. Annali Di Chimica, 2007, 97, 1139-1142.	0.6	5
36	Effect of sulfur on the synthesis and modification of carbon nanostructures. Materials Research Bulletin, 2007, 42, 1732-1739.	2.7	17

Jurgis Barkauskas

#	Article	IF	CITATIONS
37	Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model. Journal of Sol-Gel Science and Technology, 2007, 41, 193-201.	1.1	45
38	Direct electron transfer between PQQ dependent glucose dehydrogenases and carbon electrodes: An approach for electrochemical biosensors. Electrochimica Acta, 2006, 51, 5150-5156.	2.6	50
39	Biological applications of functionalized carbon nanoparticles. , 2006, , 265-276.		1
40	Modified graphitized carbon black as transducing material for reagentless HO and enzyme sensors. Talanta, 2005, 67, 783-790.	2.9	37
41	Carbonization of methacrylonitrile and methacrylic acid copolymer with subsequent investigation of carbonized products. Journal of Analytical and Applied Pyrolysis, 2004, 71, 709-719.	2.6	5
42	Investigation of electroconductive films composed of polyvinyl alcohol and graphitized carbon black. Materials Research Bulletin, 2003, 38, 1437-1447.	2.7	13
43	Investigation of conductometric humidity sensors. Talanta, 1997, 44, 1107-1112.	2.9	44