
Bingbing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5002495/publications.pdf Version: 2024-02-01

RINCRING SUN

#	Article	IF	CITATIONS
1	Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 2012, 134, 15790-15804.	13.7	372
2	Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nature Communications, 2017, 8, 1811.	12.8	360
3	Designed Synthesis of CeO ₂ Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012, 6, 5366-5380.	14.6	323
4	Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Nanotubes Determine Pulmonary Toxicity. ACS Nano, 2013, 7, 2352-2368.	14.6	265
5	Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine, 2019, 37, 3167-3178.	3.8	259
6	Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small, 2014, 10, 385-398.	10.0	242
7	Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano, 2013, 7, 5732-5745.	14.6	229
8	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. ACS Nano, 2018, 12, 1390-1402.	14.6	221
9	Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design. ACS Nano, 2014, 8, 1771-1783.	14.6	212
10	Engineering an Effective Immune Adjuvant by Designed Control of Shape and Crystallinity of Aluminum Oxyhydroxide Nanoparticles. ACS Nano, 2013, 7, 10834-10849.	14.6	192
11	NLRP3 Inflammasome Activation Induced by Engineered Nanomaterials. Small, 2013, 9, 1595-1607.	10.0	166
12	Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Letters, 2012, 12, 3050-3061.	9.1	159
13	NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. Small, 2015, 11, 2087-2097.	10.0	149
14	Adjuvants for Coronavirus Vaccines. Frontiers in Immunology, 2020, 11, 589833.	4.8	145
15	Interference in Autophagosome Fusion by Rare Earth Nanoparticles Disrupts Autophagic Flux and Regulation of an Interleukin-11² Producing Inflammasome. ACS Nano, 2014, 8, 10280-10292.	14.6	142
16	Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages <i>versus</i> Apoptosis in Hepatocytes. ACS Nano, 2018, 12, 3836-3852.	14.6	141
17	PdO Doping Tunes Band-Gap Energy Levels as Well as Oxidative Stress Responses to a Co ₃ O ₄ <i>p</i> Type Semiconductor in Cells and the Lung. Journal of the American Chemical Society, 2014, 136, 6406-6420.	13.7	136
18	Enhancing the Imaging and Biosafety of Upconversion Nanoparticles through Phosphonate Coating. ACS Nano, 2015, 9, 3293-3306.	14.6	130

BINGBING SUN

#	Article	IF	CITATIONS
19	Twoâ€Dimensional Nanomaterials for Cancer Nanotheranostics. Small, 2017, 13, 1603446.	10.0	130
20	Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping. ACS Nano, 2015, 9, 9357-9372.	14.6	108
21	Use of a Pro-Fibrogenic Mechanism-Based Predictive Toxicological Approach for Tiered Testing and Decision Analysis of Carbonaceous Nanomaterials. ACS Nano, 2015, 9, 3032-3043.	14.6	107
22	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. Small, 2015, 11, 5079-5087.	10.0	105
23	Nanomaterial-based vaccine adjuvants. Journal of Materials Chemistry B, 2016, 4, 5496-5509.	5.8	96
24	Hepcidin. Medicine (United States), 2016, 95, e3150.	1.0	76
25	Zwitteration of dextran: a facile route to integrate antifouling, switchability and optical transparency into natural polymers. Chemical Communications, 2014, 50, 3234-3237.	4.1	61
26	Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure–Activity Relationships and Biopersistence in the Lung. ACS Nano, 2016, 10, 8054-8066.	14.6	58
27	Characterization of Electronic Cigarette Aerosol and Its Induction of Oxidative Stress Response in Oral Keratinocytes. PLoS ONE, 2016, 11, e0154447.	2.5	52
28	Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and <i>E. coli</i> . ACS Nano, 2016, 10, 6008-6019.	14.6	49
29	Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core–Shell Nanoparticles. Nano Letters, 2019, 19, 4478-4489.	9.1	49
30	Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles. ACS Nano, 2019, 13, 13065-13082.	14.6	47
31	Enhanced Immune Adjuvant Activity of Aluminum Oxyhydroxide Nanorods through Cationic Surface Functionalization. ACS Applied Materials & Interfaces, 2017, 9, 21697-21705.	8.0	46
32	Structure activity relationships of engineered nanomaterials in inducing NLRP3 inflammasome activation and chronic lung fibrosis. NanoImpact, 2017, 6, 99-108.	4.5	44
33	Effects of particle size on toll-like receptor 9-mediated cytokine profiles. Biomaterials, 2011, 32, 1731-1737.	11.4	42
34	Enabling customization of non-viral gene delivery systems for individual cell types by surface-induced mineralization. Biomaterials, 2009, 30, 6386-6393.	11.4	41
35	<p>The neurotoxicity induced by engineered nanomaterials</p> . International Journal of Nanomedicine, 2019, Volume 14, 4167-4186.	6.7	41
36	Dextran–Peptide Hybrid for Efficient Gene Delivery. Langmuir, 2014, 30, 5202-5208.	3.5	40

BINGBING SUN

#	Article	IF	CITATIONS
37	Assessment of neurotoxicity induced by different-sized St¶ber silica nanoparticles: induction of pyroptosis in microglia. Nanoscale, 2019, 11, 12965-12972.	5.6	39
38	Activation of inflammasomes by tumor cell death mediated by gold nanoshells. Biomaterials, 2012, 33, 2197-2205.	11.4	33
39	Facilitating Translational Nanomedicine via Predictive Safety Assessment. Molecular Therapy, 2017, 25, 1522-1530.	8.2	31
40	Engineering aluminum hydroxyphosphate nanoparticles with well-controlled surface property to enhance humoral immune responses as vaccine adjuvants. Biomaterials, 2021, 275, 120960.	11.4	26
41	Surface Modification of Stöber Silica Nanoparticles with Controlled Moiety Densities Determines Their Cytotoxicity Profiles in Macrophages. Langmuir, 2019, 35, 14688-14695.	3.5	24
42	Electronic cigarette aerosols induce oxidative stress-dependent cell death and NF-κB mediated acute lung inflammation in mice. Archives of Toxicology, 2021, 95, 195-205.	4.2	22
43	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	14.6	19
44	Mechanistic understanding of the aspect ratio-dependent adjuvanticity of engineered aluminum oxyhydroxide nanorods in prophylactic vaccines. Nano Today, 2022, 43, 101445.	11.9	18
45	Virus-Like Particle-Templated Silica-Adjuvanted Nanovaccines with Enhanced Humoral and Cellular Immunity. ACS Nano, 2022, 16, 10482-10495.	14.6	17
46	Implications of the Differential Toxicological Effects of III–V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries. ACS Nano, 2015, 9, 12011-12025.	14.6	15
47	Nerve Growth Factor-Conjugated Mesoporous Silica Nanoparticles Promote Neuron-Like PC12 Cell Proliferation and Neurite Growth. Journal of Nanoscience and Nanotechnology, 2016, 16, 2390-2393.	0.9	15
48	Activation of resin with controllable ligand density via catalytic oxa-Michael addition and application in antibody purification. Journal of Chromatography A, 2018, 1570, 1-9.	3.7	13
49	New Strategy for Functionalization of Silica Materials via Catalytic Oxa-Michael Reaction of Surface Silanol Groups with Vinyl Sulfones. ACS Sustainable Chemistry and Engineering, 2019, 7, 9112-9120.	6.7	13
50	Effect of surface chemistry on gene transfer efficiency mediated by surface-induced DNA-doped nanocomposites. Acta Biomaterialia, 2012, 8, 1109-1116.	8.3	10
51	Predictive toxicological paradigm and high throughput approach for toxicity screening of engineered nanomaterials. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 4.	0.1	9
52	E-cigarette aerosols induce unfolded protein response in normal human oral keratinocytes. Journal of Cancer, 2019, 10, 6915-6924.	2.5	9
53	A naturally derived dextran–peptide vector for microRNA antagomir delivery. RSC Advances, 2015, 5, 28019-28022.	3.6	8
54	Correlation of the composition of biominerals with their ability of stimulating intracellular DNA sensors and inflammatory cytokines. Biomaterials, 2015, 54, 106-115.	11.4	7

BINGBING SUN

#	ARTICLE	IF	CITATIONS
55	Mechanistic Understanding of the Engineered Nanomaterial-Induced Toxicity on Kidney. Journal of Nanomaterials, 2019, 2019, 1-12.	2.7	7
56	Engineered Hydroxyapatite Nanoadjuvants with Controlled Shape and Aspect Ratios Reveal Their Immunomodulatory Potentials. ACS Applied Materials & Interfaces, 2021, 13, 59662-59672.	8.0	7
57	Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability. Biosensors, 2022, 12, 297.	4.7	7
58	Monosodium urate crystals with controlled shape and aspect ratio for elucidating the pathological progress of acute gout. , 2022, 139, 213005.		7
59	A Microfluidic Manipulator for Enrichment and Alignment of Moving Cells and Particles. Journal of Biomechanical Engineering, 2009, 131, 074505.	1.3	6
60	Engineering the hydroxyl content on aluminum oxyhydroxide nanorod for elucidating the antigen adsorption behavior. Npj Vaccines, 2022, 7, .	6.0	6
61	Self-assembled aluminum oxyhydroxide nanorices with superior suspension stability for vaccine adjuvant. Journal of Colloid and Interface Science, 2022, 627, 238-246.	9.4	5
62	Response to comment on: Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine, 2020, 38, 2759.	3.8	4
63	Using MoS2/Fe3O4 as Ion-Electron Transduction Layer to Manufacture All-Solid-State Ion-Selective Electrode for Determination of Serum Potassium. Chemosensors, 2021, 9, 155.	3.6	4
64	Investigation of mouse hepatitis virus strain A59 inactivation under both ambient and cold environments reveals the mechanisms of infectivity reduction following UVC exposure. Journal of Environmental Chemical Engineering, 2022, 10, 107206.	6.7	4
65	Mechanistic elucidation of freezing-induced surface decomposition of aluminum oxyhydroxide adjuvant. IScience, 2022, 25, 104456.	4.1	2
66	Controlling Surface-Induced Nanocomposites by Lipoplexes for Enhanced Gene Transfer. Journal of Nanomaterials, 2015, 2015, 1-13.	2.7	1
67	Safety Concerns of Industrial Engineered Nanomaterials. , 2018, , 1063-1072.		1

68 Aluminum-Based Nano-adjuvants. , 2014, , 1-6.

0