
Wanling Xuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5002202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CX3CL1 Worsens Cardiorenal Dysfunction and Serves as a Therapeutic Target of Canagliflozin for Cardiorenal Syndrome. Frontiers in Pharmacology, 2022, 13, 848310.	3.5	4
2	Pluripotent stem cell-induced skeletal muscle progenitor cells with givinostat promote myoangiogenesis and restore dystrophin in injured Duchenne dystrophic muscle. Stem Cell Research and Therapy, 2021, 12, 131.	5.5	14
3	Deep learning based fully automatic segmentation of the left ventricular endocardium and epicardium from cardiac cine MRI. Quantitative Imaging in Medicine and Surgery, 2021, 11, 1600-1612.	2.0	14
4	Extracellular Vesicles From Notch Activated Cardiac Mesenchymal Stem Cells Promote Myocyte Proliferation and Neovasculogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 11.	3.7	27
5	Cell-modified bioprinted microspheres for vascular regeneration. Materials Science and Engineering C, 2020, 112, 110896.	7.3	6
6	Restoration of Dystrophin in Duchenne Muscular Dystrophy by Human iPS Cells Derived Skeletal Muscle Progenitor Cells. FASEB Journal, 2020, 34, 1-1.	0.5	0
7	miRNAs in Extracellular Vesicles from iPS-Derived Cardiac Progenitor Cells Effectively Reduce Fibrosis and Promote Angiogenesis in Infarcted Heart. Stem Cells International, 2019, 2019, 1-14.	2.5	22
8	Fully automatic segmentation of 4D MRI for cardiac functional measurements. Medical Physics, 2019, 46, 180-189.	3.0	24
9	Notch1 Overexpression in Cardiac Mesenchymal Stem Cells Renders their Exosomes Highly Effective in Promoting Angiogenesis and Cardiac Regeneration. FASEB Journal, 2019, 33, lb63.	0.5	0
10	Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis. Shock, 2018, 50, 627-639.	2.1	15
11	Exosomal miRNAs derived from specific cardiac progenitor cells exert strong therapeutic effect on myocardial infarction. FASEB Journal, 2018, 32, 675.10.	0.5	0
12	Elevated circulating IL-32 presents a poor prognostic outcome in patients with heart failure after myocardial infarction. International Journal of Cardiology, 2017, 243, 367-373.	1.7	14
13	FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Oncotarget, 2016, 7, 64649-64664.	1.8	100
14	Cellular and molecular basis of cardiac regeneration. Turkish Journal of Biology, 2016, 40, 265-275.	0.8	0
15	Myocardial Hypertrophic Preconditioning Attenuates Cardiomyocyte Hypertrophy and Slows Progression to Heart Failure Through Upregulation of S100A8/A9. Circulation, 2015, 131, 1506-1517.	1.6	66
16	Cytosolic CARP Promotes Angiotensin II- or Pressure Overload-Induced Cardiomyocyte Hypertrophy through Calcineurin Accumulation. PLoS ONE, 2014, 9, e104040.	2.5	16
17	Deficiency of type 1 cannabinoid receptors worsens acute heart failure induced by pressure overload in mice. European Heart Journal, 2012, 33, 3124-3133.	2.2	20
18	Resveratrol improves myocardial ischemia and ischemic heart failure in mice by antagonizing the detrimental effects of fractalkine*. Critical Care Medicine, 2012, 40, 3026-3033	0.9	51

WANLING XUAN

#	Article	IF	CITATIONS
19	Ultrasound molecular imaging of angiogenesis induced by mutant forms of hypoxia-inducible factor-1α. Cardiovascular Research, 2011, 92, 256-266.	3.8	10
20	Late-phase detection of recent myocardial ischaemia using ultrasound molecular imaging targeted to intercellular adhesion molecule-1. Cardiovascular Research, 2011, 89, 175-183.	3.8	24
21	Detrimental effect of fractalkine on myocardial ischaemia and heart failure. Cardiovascular Research, 2011, 92, 385-393.	3.8	72
22	Antihypertrophic effects of adiponectin on cardiomyocytes are associated with the inhibition of heparin-binding epidermal growth factor signaling. Biochemical and Biophysical Research Communications, 2010, 393, 519-525.	2.1	11