Gavin R H Sandercock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5002085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can discreet performance banding, as compared to bio-banding, discriminate technical skills in male adolescent soccer players? A preliminary investigation. International Journal of Sports Science and Coaching, 2022, 17, 325-333.	0.7	9
2	Associations between cardiorespiratory fitness, fatness, hemodynamic characteristics, and sedentary behaviour in primary school-aged children. BMC Sports Science, Medicine and Rehabilitation, 2022, 14, 16.	0.7	8
3	Who is meeting the strengthening physical activity guidelines by definition: A cross-sectional study of 253 423 English adults?. PLoS ONE, 2022, 17, e0267277.	1.1	8
4	Developing a New Curvilinear Allometric Model to Improve the Fit and Validity of the 20-m Shuttle Run Test as a Predictor of Cardiorespiratory Fitness in Adults and Youth. Sports Medicine, 2021, 51, 1581-1589.	3.1	16
5	Response to the Comment by Armstrong and Welsman on †Developing a New Curvilinear Allometric Model to Improve the Fit and Validity of the 20-m Shuttle Run Test as a Predictor of Cardiorespiratory Fitness in Adults and Youth'. Sports Medicine, 2021, 51, 1595-1597.	3.1	1
6	Modification of the Rosenberg Scale to Assess Self-Esteem in Children. Frontiers in Public Health, 2021, 9, 655892.	1.3	9
7	Effects of activity pacing in patients with chronic conditions associated with fatigue complaints: a meta-analysis. Disability and Rehabilitation, 2020, 42, 613-622.	0.9	26
8	Modeling the dose–response rate/associations between VO2max and self-reported Physical Activity Questionnaire in children and adolescents. Journal of Sport and Health Science, 2020, 9, 90-95.	3.3	9
9	Normative reference values for estimated cardiorespiratory fitness in apparently healthy British men and women. PLoS ONE, 2020, 15, e0240099.	1.1	8
10	Temporal trends in muscular fitness of English 10-year-olds 1998–2014: An allometric approach. Journal of Science and Medicine in Sport, 2019, 22, 201-205.	0.6	62
11	Contribution of Physical Education to the Daily Physical Activity of Schoolchildren in Saudi Arabia. International Journal of Environmental Research and Public Health, 2019, 16, 2397.	1.2	22
12	Cross-cultural comparisons of aerobic and muscular fitness in Tanzanian and English youth: An allometric approach. PLoS ONE, 2019, 14, e0211414.	1.1	2
13	The concept of margins of stability can be used to better understand a change in obstacle crossing strategy with an increase in age. Journal of Biomechanics, 2019, 84, 147-152.	0.9	17
14	Is it time to give population health surveillance a late fitness test?. British Journal of Sports Medicine, 2019, 53, 463-464.	3.1	4
15	Cardiorespiratory fitness and activity explains the obesity-deprivation relationship in children. Health Promotion International, 2018, 33, daw106.	0.9	6
16	Socioâ€demographic differences in Colombian children's muscular fitness: Does scaling for differences in body size present a challenge to conventional thinking?. American Journal of Human Biology, 2018, 30, e23128.	0.8	1
17	A Meta-Analysis of Resistance Training in Female Youth: Its Effect on Muscular Strength, and Shortcomings in the Literature. Sports Medicine, 2018, 48, 1661-1671.	3.1	60
18	Maturation-related adaptations in running speed in response to sprint training in youth soccer players. Journal of Science and Medicine in Sport, 2018, 21, 538-542.	0.6	23

#	Article	IF	CITATIONS
19	Reference values for the incremental shuttle walk test in patients with cardiovascular disease entering exercise-based cardiac rehabilitation. Journal of Sports Sciences, 2017, 35, 1-6.	1.0	13
20	Maturational and social factors contributing to relative age effects in school sports: Data from the London Youth Games. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 2070-2079.	1.3	11
21	A meta-analysis of maturation-related variation in adolescent boy athletes' adaptations to short-term resistance training. Journal of Sports Sciences, 2017, 35, 1041-1051.	1.0	78
22	Maturation-Related Effect of Low-Dose Plyometric Training on Performance in Youth Hockey Players. Pediatric Exercise Science, 2017, 29, 194-202.	0.5	35
23	Is Olympic inspiration associated with fitness and physical activity in English schoolchildren? A repeated cross-sectional comparison before and 18â€months after London 2012. BMJ Open, 2016, 6, e011670.	0.8	6
24	A Method by Which to Assess the Scalability of Field-Based Fitness Tests of Cardiorespiratory Fitness Among Schoolchildren. Sports Medicine, 2016, 46, 1819-1831.	3.1	13
25	Oxygen Costs of the Incremental Shuttle Walk Test in Cardiac Rehabilitation Participants: An Historical and Contemporary Analysis. Sports Medicine, 2016, 46, 1953-1962.	3.1	6
26	Effects of exercise-based cardiac rehabilitation on cardiorespiratory fitness: A meta-analysis of UK studies. International Journal of Cardiology, 2016, 221, 644-651.	0.8	15
27	Media device ownership and media use: Associations with sedentary time, physical activity and fitness in English youth. Preventive Medicine Reports, 2016, 4, 162-168.	0.8	24
28	Associations between showering behaviours following physical education, physical activity and fitness in English schoolchildren. European Journal of Sport Science, 2016, 16, 128-134.	1.4	5
29	The Cardiac Rehabilitation Inventory. Journal of Cardiovascular Nursing, 2016, 31, 175-185.	0.6	8
30	Modelling the association between weight status and social deprivation in English school children: Can physical activity and fitness affect the relationship?. Annals of Human Biology, 2016, 43, 497-504.	0.4	11
31	Fitness Testing for Children: Let's Mount the Zebra!. Journal of Physical Activity and Health, 2015, 12, 597-603.	1.0	21
32	The effect of playground- and nature-based playtime interventions on physical activity and self-esteem in UK school children. International Journal of Environmental Health Research, 2015, 25, 196-206.	1.3	45
33	A cross-cultural comparison of body composition, physical fitness and physical activity between regional samples of Canadian and English children and adolescents. Canadian Journal of Public Health, 2014, 105, e245-e250.	1.1	13
34	Association between habitual school travel and muscular fitness in youth. Preventive Medicine, 2014, 67, 216-220.	1.6	11
35	Differential responses of adiposity, inflammation and autonomic function to aerobic versus resistance training in older adults. Experimental Gerontology, 2013, 48, 326-333.	1.2	57
36	Changes in cardiorespiratory fitness in cardiac rehabilitation patients: A meta-analysis. International Journal of Cardiology, 2013, 167, 894-902.	0.8	89

GAVIN R H SANDERCOCK

#	Article	IF	CITATIONS
37	Independence of physical activity and screen time as predictors of cardiorespiratory fitness in youth. Pediatric Research, 2013, 73, 692-697.	1.1	23
38	Cardiorespiratory fitness changes in patients receiving comprehensive outpatient cardiac rehabilitation in the UK: a multicentre study. Heart, 2013, 99, 785-790.	1.2	52
39	Quantification of the Relative Age Effect in Three Indices of Physical Performance. Journal of Strength and Conditioning Research, 2013, 27, 3293-3299.	1.0	20
40	Physical <scp>A</scp> ctivity <scp>Q</scp> uestionnaire for children and adolescents: <scp>E</scp> nglish norms and cutâ€off points. Pediatrics International, 2013, 55, 498-507.	0.2	81
41	A randomised control trial of physical activity in a perceived environment on self-esteem and mood in UK adolescents. International Journal of Environmental Health Research, 2013, 23, 311-320.	1.3	35
42	Associations Between Perceived Parental Physical Activity and Aerobic Fitness in Schoolchildren. Journal of Physical Activity and Health, 2013, 10, 397-405.	1.0	7
43	A Repeated Measures Experiment of Green Exercise to Improve Self-Esteem in UK School Children. PLoS ONE, 2013, 8, e69176.	1.1	38
44	Recreational Cycling and Cardiorespiratory Fitness in English Youth. Medicine and Science in Sports and Exercise, 2012, 44, 474-480.	0.2	4
45	Pacing Strategy in Schoolchildren Differs with Age and Cognitive Development. Medicine and Science in Sports and Exercise, 2012, 44, 362-369.	0.2	38
46	Evaluation of a multicomponent intervention to improve weight status and fitness in children: Upstarts. Pediatrics International, 2012, 54, 911-917.	0.2	6
47	Centile curves and normative values for the twenty metre shuttle-run test in English schoolchildren. Journal of Sports Sciences, 2012, 30, 679-687.	1.0	44
48	Metabolic syndrome, physical activity and cardiac autonomic function. Diabetes/Metabolism Research and Reviews, 2012, 28, 363-369.	1.7	59
49	Screen time and passive school travel as independent predictors of cardiorespiratory fitness in youth. Preventive Medicine, 2012, 54, 319-322.	1.6	28
50	Temporal relationships between screen-time and physical activity with cardiorespiratory fitness in English Schoolchildren: A 2-year longitudinal study. Preventive Medicine, 2012, 55, 37-39.	1.6	43
51	Benefits of achieving vigorous as well as moderate physical activity recommendations: Evidence from heart rate complexity and cardiac vagal modulation. Journal of Sports Sciences, 2011, 29, 1011-1018.	1.0	18
52	Comparison of cardiorespiratory fitness and body mass index between rural and urban youth: Findings from the East of England Healthy Hearts Study. Pediatrics International, 2011, 53, 718-724.	0.2	13
53	Aerobic Fitness and Mode of Travel to School in English Schoolchildren. Medicine and Science in Sports and Exercise, 2010, 42, 281-287.	0.2	89
54	Resting autonomic modulations and the heart rate response to exercise. Clinical Autonomic Research, 2010, 20, 213-221.	1.4	23

GAVIN R H SANDERCOCK

#	Article	IF	CITATIONS
55	Long-term reliability of the incremental shuttle walking test in clinically stable cardiovascular disease patients. Physiotherapy, 2010, 96, 222-227.	0.2	31
56	A Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. PACE - Pacing and Clinical Electrophysiology, 2010, 33, 1407-1417.	0.5	535
57	Associations between habitual school-day breakfast consumption, body mass index, physical activity and cardiorespiratory fitness in English schoolchildren. European Journal of Clinical Nutrition, 2010, 64, 1086-1092.	1.3	116
58	Vertical jumping and leg power normative data for English school children aged 10–15 years. Journal of Sports Sciences, 2010, 28, 867-872.	1.0	60
59	Ten year secular declines in the cardiorespiratory fitness of affluent English children are largely independent of changes in body mass index. Archives of Disease in Childhood, 2010, 95, 46-47.	1.0	42
60	Physical activity levels of children living in different built environments. Preventive Medicine, 2010, 50, 193-198.	1.6	86
61	Vigorous physical activity and vagal modulation in young adults. European Journal of Cardiovascular Prevention and Rehabilitation, 2009, 16, 705-711.	3.1	29
62	Validity and Reliability of Short-Term Heart-Rate Variability from the Polar S810. Medicine and Science in Sports and Exercise, 2009, 41, 243-250.	0.2	233
63	Does the Twenty Meter Shuttle-Run Test Elicit Maximal Effort in 11- to 16-Year-Olds?. Pediatric Exercise Science, 2009, 21, 55-62.	0.5	25
64	Comparison of cardiac output determined by different rebreathing methods at rest and at peak exercise. European Journal of Applied Physiology, 2008, 102, 593-599.	1.2	45
65	Levels of agreement for RR intervals and short-term heart rate variability obtained from the Polar S810 and an alternative system. European Journal of Applied Physiology, 2008, 103, 529-537.	1.2	101
66	Twenty-metre shuttle run test performance of English children aged 11–Â15 years in 2007: Comparisons with international standards. Journal of Sports Sciences, 2008, 26, 953-957.	1.0	14
67	The relationships between self-assessed habitual physical activity and non-invasive measures of cardiac autonomic modulation in young healthy volunteers. Journal of Sports Sciences, 2008, 26, 1171-1177.	1.0	25
68	Association between RR interval and high-frequency heart rate variability acquired during short-term, resting recordings with free and paced breathing. Physiological Measurement, 2008, 29, 795-802.	1.2	15
69	Lack of agreement between gas exchange variables measured by two metabolic systems. Journal of Sports Science and Medicine, 2008, 7, 15-22.	0.7	7
70	Normative values, reliability and sample size estimates in heart rate variability. Clinical Science, 2007, 113, 129-130.	1.8	30
71	Changes in short-term measures of heart rate variability after eight weeks of cardiac rehabilitation. Clinical Autonomic Research, 2007, 17, 39-45.	1.4	53
72	The impact of short term supervised and home-based walking programmes on heart rate variability in patients with peripheral arterial disease. Journal of Sports Science and Medicine, 2007, 6, 471-6.	0.7	14

#	Article	IF	CITATIONS
73	Effects of Exercise on Heart Rate Variability: Inferences from Meta-Analysis. Medicine and Science in Sports and Exercise, 2005, 37, 433-439.	0.2	290
74	The reliability of short-term measurements of heart rate variability. International Journal of Cardiology, 2005, 103, 238-247.	0.8	237
75	The influence of compression tights on running economy varies by relative intensity. International Journal of Sports Science and Coaching, 0, , 174795412210979.	0.7	1