Wen-Sheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5001680/publications.pdf

Version: 2024-02-01

331670 454955 45 951 21 30 citations h-index g-index papers 47 47 47 643 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt. Macromolecules, 2016, 49, 8341-8354.	4.8	65
2	Influence of Cohesive Energy and Chain Stiffness on Polymer Glass Formation. Macromolecules, 2014, 47, 6990-6997.	4.8	61
3	Influence of Cohesive Energy on Relaxation in a Model Glass-Forming Polymer Melt. Macromolecules, 2016, 49, 8355-8370.	4.8	60
4	Energy renormalization for coarse-graining polymers having different segmental structures. Science Advances, 2019, 5, eaav4683.	10.3	58
5	Molecular Dynamics Investigation of the Relaxation Mechanism of Entangled Polymers after a Large Step Deformation. ACS Macro Letters, 2018, 7, 190-195.	4.8	39
6	Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules, 2021, 54, 3001-3033.	4.8	38
7	Molecular Dynamics Study of Glass Formation in Polymer Melts with Varying Chain Stiffness. Macromolecules, 2020, 53, 4796-4809.	4.8	36
8	Lattice cluster theory for polymer melts with specific interactions. Journal of Chemical Physics, 2014, 141, 044909.	3.0	34
9	Influence of Pressure on Glass Formation in a Simulated Polymer Melt. Macromolecules, 2017, 50, 2585-2598.	4.8	34
10	Hard ellipses: Equation of state, structure, and self-diffusion. Journal of Chemical Physics, 2013, 139, 024501.	3.0	33
11	Generalized entropy theory of glass-formation in fully flexible polymer melts. Journal of Chemical Physics, 2016, 145, 234509.	3.0	30
12	Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids. Journal of Chemical Physics, 2019, 151, 184503.	3.0	30
13	Generalized Entropy Theory of Glass Formation in Polymer Melts with Specific Interactions. Macromolecules, 2015, 48, 2333-2343.	4.8	29
14	Heterogeneous crystallization of hard spheres on patterned substrates. Journal of Chemical Physics, 2010, 132, 144506.	3.0	28
15	Equation of State and Entropy Theory Approach to Thermodynamic Scaling in Polymeric Glass-Forming Liquids. Macromolecules, 2021, 54, 3247-3269.	4.8	28
16	Role of Cohesive Energy in Glass Formation of Polymers with and without Bending Constraints. Macromolecules, 2020, 53, 9678-9697.	4.8	28
17	Understanding Activation Volume in Glass-Forming Polymer Melts via Generalized Entropy Theory. Macromolecules, 2020, 53, 7239-7252.	4.8	24
18	Influence of Side-Chain Length and Relative Rigidities of Backbone and Side Chains on Glass Formation of Branched Polymers. Macromolecules, 2021, 54, 6327-6341.	4.8	23

#	Article	IF	Citations
19	Thermodynamics and Reaction Kinetics of Symmetric Vitrimers Based on Dioxaborolane Metathesis. Macromolecules, 2021, 54, 6799-6809.	4.8	23
20	Stringlike Cooperative Motion Explains the Influence of Pressure on Relaxation in a Model Glass-Forming Polymer Melt. ACS Macro Letters, 2016, 5, 1375-1380.	4.8	22
21	Thermodynamic scaling of dynamics in polymer melts: Predictions from the generalized entropy theory. Journal of Chemical Physics, 2013, 138, 234501.	3.0	21
22	Investigation of the Temperature Dependence of Activation Volume in Glass-Forming Polymer Melts under Variable Pressure Conditions. Macromolecules, 2020, 53, 6828-6841.	4.8	21
23	Effect of attractions on correlation length scales in a glass-forming liquid. Physical Review E, 2012, 86, 041506.	2.1	18
24	Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. Journal of Physical Chemistry B, 2015, 119, 6041-6049.	2.6	15
25	Scaling Behavior of Anisotropy Relaxation in Deformed Polymers. Physical Review Letters, 2018, 121, 117801.	7.8	13
26	Relaxation dynamics in a binary hard-ellipse liquid. Soft Matter, 2015, 11, 627-634.	2.7	12
27	Influence of Ionic Interaction Strength on Glass Formation of an Ion-Containing Polymer Melt. Macromolecules, 2021, 54, 9587-9601.	4.8	12
28	Growing point-to-set length scales in Lennard-Jones glass-forming liquids. Journal of Chemical Physics, 2014, 140, 124502.	3.0	10
29	Dense packing in the monodisperse hard-sphere system: A numerical study. European Physical Journal E, 2010, 31, 377-382.	1.6	9
30	Melt Properties and String Model Description of Glass Formation in Graft Polymers of Different Side-Chain Lengths. Macromolecules, 2022, 55, 3221-3235.	4.8	9
31	Dynamics and correlation length scales of a glass-forming liquid in quiescent and sheared conditions. Journal of Physics Condensed Matter, 2012, 24, 325101.	1.8	7
32	Structure, compressibility factor, and dynamics of highly size-asymmetric binary hard-disk liquids. Journal of Chemical Physics, 2012, 137, 104509.	3.0	7
33	Glass formation in a mixture of hard disks and hard ellipses. Journal of Chemical Physics, 2015, 142, 224506.	3.0	7
34	Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers. Journal of Physical Chemistry B, 2017, 121, 984-994.	2.6	7
35	Adsorption of a hydrophobic cationic polypeptide onto acidic lipid membrane. Polymer, 2017, 122, 125-138.	3.8	7
36	Energy Renormalization for Coarseâ€Graining Polymers with Different Fragilities: Predictions from the Generalized Entropy Theory. Macromolecular Theory and Simulations, 2020, 29, 1900051.	1.4	7

3

#	Article	IF	CITATIONS
37	Diffusive redistribution of small spheres in crystallization of highly asymmetric binary hard-sphere mixtures. Europhysics Letters, 2012, 97, 66007.	2.0	4
38	Lattice model of linear telechelic polymer melts. I. Inclusion of chain semiflexibility in the lattice cluster theory. Journal of Chemical Physics, 2015, 143, 024901.	3.0	4
39	Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties. Journal of Chemical Physics, 2015, 143, 024902.	3.0	3
40	Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains. Polymers, 2016, 8, 235.	4.5	3
41	Monte Carlo study on a complex of cationic polymers and anionic lipid monolayer. Polymer, 2016, 104, 138-148.	3.8	3
42	Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds. Journal of Chemical Physics, 2016, 144, 214903.	3.0	2
43	Stress-Structure Relationship of the Reversible Associating Polymer Network under Start-up Shear Flow. Chinese Journal of Polymer Science (English Edition), 2021, 39, 387-396.	3.8	2
44	Molecular Dynamics Study of Star Polymer Melts under Start-up Shear. Chinese Journal of Polymer Science (English Edition), 2022, 40, 807-816.	3.8	2
45	Assembly of body-centered cubic crystals in hard spheres. European Physical Journal E, 2011, 34, 47.	1.6	1