Igor B Sivaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5001453/publications.pdf

Version: 2024-02-01

186	5,201	36	63
papers	citations	h-index	g-index
193	193	193	2136
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of naphthalimide derivatives of closo‑dodecaborate and nido‑carborane. Journal of Organometallic Chemistry, 2022, 959, 122186.	0.8	7
2	Nucleophilic addition reactions to nitrilium derivatives [B ₁₂ H ₁₁ NCCH ₃] ^{â^'} and [B ₁₂ H ₁₁ NCCH ₂ CH ₃] ^{â^'} . Synthesis and structures of <i>closo</i> -dodecaborate-based iminols, amides and amidines. Dalton Transactions, 2022, 51, 3051-3059.	1.6	19
3	Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review. Reactions, 2022, 3, 172-191.	0.9	8
4	New approaches to the functionalization of the 1-carba- <i>closo</i> -decaborate anion. Chemical Communications, 2022, 58, 3775-3778.	2.2	5
5	Synthesis and Crystal Structure of 9,12-Dibromo-ortho-Carborane. MolBank, 2022, 2022, M1347.	0.2	5
6	Polyhedral Boranes and Carboranes. , 2022, , 196-262.		4
7	Transition metal catalyzed synthesis of derivatives of polyhedral boron hydrides with B N, B P, B O and B S bonds. Advances in Catalysis, 2022, , .	0.1	1
8	Effects of Linkers on the Development of Liposomal Formulation of Cholesterol Conjugated Cobalt Bis(dicarbollides). Journal of Pharmaceutical Sciences, 2021, 110, 1365-1373.	1.6	14
9	The unexpected reactivity of 9-iodo-nido-carborane: from nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na[4,4′,4′′-(MeOCH2CH2O)3-3,3′,3′′-Co3(Î⅓3-O)(Î⅓3-S) Dalton Transactions, 2021, 50, 2671-2688.)(11 <i>6</i> 2-C2B9	9 ⊌ 10)3].
10	Synthesis of Bis(Carboranyl)amides 1,1′-μ-(CH2NH(O)C(CH2)n-1,2-C2B10H11)2 (n = 0, 1) and Attempt of Synthesis of Gadolinium Bis(Dicarbollide). Molecules, 2021, 26, 1321.	1.7	1
11	Coordination Ability of 10-EtC(NHPr)=HN-7,8-C2B9H11 in the Reactions with Nickel(II) Phosphine Complexes. Crystals, 2021, 11, 306.	1.0	8
12	1,12-Diiodo-Ortho-Carborane: A Classic Textbook Example of the Dihalogen Bond. Crystals, 2021, 11, 396.	1.0	12
13	Rhodacarboranes containing σ- and π-carborane ligands. New aspects. Inorganica Chimica Acta, 2021, 518, 120243.	1.2	5
14	Crystal Structure of 9-Dibenzylsulfide-7,8-dicarba-nido-undecaborane 9-Bn2S-7,8-C2B9H11. MolBank, 2021, 2021, M1230.	0.2	1
15	Transition metal complexes with carboranylphosphine ligands. Coordination Chemistry Reviews, 2021, 436, 213795.	9.5	24
16	Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russian Chemical Reviews, 2021, 90, 785-830.	2.5	19
17	First EOTT and BPDT-TTF based molecular conductors with [8,8′-Cl2–3,3′-Fe(1,2-C2B9H10)2]â⁻² anion – synthesis, structure, properties. Journal of Organometallic Chemistry, 2021, 949, 121956.	" 0.8	2
18	New Radical-Cation Salts Based on the TMTTF and TMTSF Donors with Iron and Chromium Bis(Dicarbollide) Complexes: Synthesis, Structure, Properties. Crystals, 2021, 11, 1118.	1.0	1

#	Article	IF	Citations
19	Synthesis and crystal structures of nickel(<scp>ii</scp>) and palladium(<scp>ii</scp>) complexes with <i>o</i> -carboranyl amidine ligands. Dalton Transactions, 2021, 50, 4967-4975.	1.6	19
20	Synthesis of Boronated Amidines by Addition of Amines to Nitrilium Derivative of Cobalt Bis(Dicarbollide). Molecules, 2021, 26, 6544.	1.7	6
21	Synthesis and Catalytic Properties of Novel Ruthenacarboranes Based on nido-[5-Me-7,8-C2B9H10]2â^' and nido-[5,6-Me2-7,8-C2B9H9]2â^' Dicarbollide Ligands. Catalysts, 2021, 11, 1409.	1.6	8
22	Synthesis of 3-Aryl-ortho-carboranes with Sensitive Functional Groups. Molecules, 2021, 26, 7297.	1.7	3
23	Isomeric ammonio derivatives of nido-carborane 3- and 10-H3N-7,8-C2B9H11. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 901-904.	0.8	8
24	Two possible ways to combine boron and gadolinium for Gd-guided BNCT. A concept. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 910-917.	0.8	5
25	Formation of oxidopolyborates in destruction of the [B11H14] \hat{a} e" anion promoted by transition metals. Inorganica Chimica Acta, 2020, 509, 119693.	1.2	12
26	One-Pot Synthesis of B-Aryl Carboranes with Sensitive Functional Groups Using Sequential Cobaltand Palladium-Catalyzed Reactions. Catalysts, 2020, 10, 1348.	1.6	5
27	Tungsten carbonyl Ïf-complexes with C-thioethers based on 9-Me ₃ N-7,8-C ₂ B ₉ H ₁₁ . New Journal of Chemistry, 2020, 44, 13934-13938.	1.4	3
28	First radical cation salts based on dibenzotetrathiafulvalene (DBTTF) with metallacarborane anions: Synthesis, structure, properties. Journal of Organometallic Chemistry, 2020, 930, 121592.	0.8	4
29	Synthesis and reactivity of propionitrilium derivatives of cobalt and iron bis(dicarbollides). New Journal of Chemistry, 2020, 44, 15836-15848.	1.4	13
30	Bis(dicarbollide) Complexes of Transition Metals as a Platform for Molecular Switches. Study of Complexation of 8,8′-Bis(methylsulfanyl) Derivatives of Cobalt and Iron Bis(dicarbollides). Molecules, 2020, 25, 5745.	1.7	9
31	"Free of Base―Sulfa-Michael Addition for Novel o-Carboranyl-DL-Cysteine Synthesis. Crystals, 2020, 10, 1133.	1.0	2
32	The First Nickelacarborane with closo-nido Structure. Molecules, 2020, 25, 6009.	1.7	3
33	Synthesis of C-Methoxy- and C,C'-Dimethoxy-ortho-carboranes. Journal of Organometallic Chemistry, 2020, 927, 121523.	0.8	2
34	Synthesis and structure of 3-arylazo derivatives of ortho-carborane. New Journal of Chemistry, 2020, 44, 10199-10202.	1.4	5
35	Boronâ€Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. Chemistry - A European Journal, 2020, 26, 13832-13841.	1.7	28
36	Conjugate of chlorin <i>е₆</i> with iron bis(dicarbollide) nanocluster: synthesis and biological properties. Future Medicinal Chemistry, 2020, 12, 1015-1023.	1.1	7

3

#	Article	IF	Citations
37	Synthesis of novel carboranyl amidines. Journal of Organometallic Chemistry, 2020, 909, 121111.	0.8	14
38	Synthesis and study of C-substituted methylthio derivatives of cobalt bis (dicarbollide). RSC Advances, 2020, 10, 2887-2896.	1.7	7
39	Arene–Ruthenium Complexes of 1,1′-Bis(<i>ortho</i> carborane): Synthesis, Characterization, and Catalysis. Inorganic Chemistry, 2019, 58, 11751-11761.	1.9	22
40	Expanding the chemistry of singleâ€ion conducting poly(ionic liquid)s with polyhedral boron anions. Polymer International, 2019, 68, 1570-1579.	1.6	12
41	Stability of nickel bis(dicarbollide) complexes. Mendeleev Communications, 2019, 29, 534-536.	0.6	7
42	10-NCCH2CH2OCH2CH2C N-7,8-C2B9H11: Synthesis and reactions with various nucleophiles. Polyhedron, 2019, 174, 114170.	1.0	15
43	Nitrilium derivatives of polyhedral boron compounds (boranes, carboranes, metallocarboranes): Synthesis and reactivity. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 983-988.	0.8	31
44	1,1′-Bis(ortho-carborane)-based transition metal complexes. Coordination Chemistry Reviews, 2019, 392, 146-176.	9.5	31
45	Dimethyloxonium and Methoxy Derivatives of nido-Carborane and Metal Complexes Thereof. Inorganics, 2019, 7, 46.	1.2	12
46	Synthesis of novel carboranyl azides and "click―reactions thereof. Journal of Organometallic Chemistry, 2019, 904, 121007.	0.8	7
47	â€~Click' synthesis of cobalt bis(dicarbollide)–cholesterol conjugates. Mendeleev Communications, 2019, 29, 628-630.	0.6	15
48	Synthesis and Structure of Methylsulfanyl Derivatives of Nickel Bis(Dicarbollide). Molecules, 2019, 24, 4449.	1.7	9
49	Synthesis and structure of bis(methylsulfanyl) derivatives of iron bis(dicarbollide). Journal of Organometallic Chemistry, 2018, 865, 239-246.	0.8	15
50	First molecular conductors of BPDT-TTF with metallacarborane anions: (BPDT-TTF)[3,3â \in 2- \mathcal{D}_{i} r(1,2-C2B9H11)2] and (BPDT-TTF)[3,3â \in 2- \mathcal{D}_{i} o(1,2-C2B9H11)2] â \in " Synthesis, structure, properties. Journal of Organometallic Chemistry, 2018, 867, 375-380.	0.8	9
51	Intramolecular non-covalent interactions in <i>nido</i> -carboranes and metallacomplexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 104-109.	0.8	2
52	Synthesis of 8-alkoxy and 8,8′-dialkoxy derivatives of cobalt bis(dicarbollide). Journal of Organometallic Chemistry, 2018, 865, 138-144.	0.8	14
53	Synthesis of rhodacarboranes containing $\ddot{l}f$ - and $\ddot{l}\in$ -carboranyl ligands in one molecule. Journal of Organometallic Chemistry, 2018, 867, 342-346.	0.8	16
54	Novel sulfur containing derivatives of carboranes and metallacarboranes. Pure and Applied Chemistry, 2018, 90, 633-642.	0.9	8

#	Article	IF	CITATIONS
55	Design of molecular switches based on transition metal bis(dicarbollide) complexes. Russian Chemical Bulletin, 2018, 67, 1117-1130.	0.4	11
56	Nucleophilic addition reactions to the ethylnitrilium derivative of <i>nido</i> -carborane 10-EtCî€,N-7,8-C ₂ B ₉ H ₁₁ . New Journal of Chemistry, 2018, 42, 17958-17967.	1.4	38
57	Large magnetic anisotropy of chromium(III) ions in a bis(ethylenedithio)tetrathiafulvalenium salt of chromium bis(dicarbollide), (ET)2[3,3′-Cr(1,2-C2B9H11)2]. Transition Metal Chemistry, 2018, 43, 647-655.	0.7	6
58	Synthesis of cobalt bis(8-methylthio-1,2-dicarbollide)- pentacarbonyltungsten complexes. Russian Chemical Bulletin, 2018, 67, 570-572.	0.4	8
59	Synthesis of new nido-carborane based carboxylic acids and amines. Polyhedron, 2018, 153, 145-151.	1.0	14
60	Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11] Some evidences of BH···X hydride-halogen bonds in 9- XCH2(Me)S-7,8-C2B9H11 (XÂ= Cl, Br, I). Journal of Organometallic Chemistry, 2017, 849-850, 315-323.	0.8	27
61	Carborane Derivative Conjugated with Gold Nanoclusters for Targeted Cancer Cell Imaging. Biomacromolecules, 2017, 18, 1466-1472.	2.6	47
62	Large, weakly basic bis(carboranyl)phosphines: an experimental and computational study. Dalton Transactions, 2017, 46, 5218-5228.	1.6	18
63	Nitrogen heterocyclic salts of polyhedral borane anions: from ionic liquids to energetic materials. Chemistry of Heterocyclic Compounds, 2017, 53, 638-658.	0.6	45
64	Synthesis of 10-Methylsulfide and 10-Alkylmethylsulfoniumnido-Carborane Derivatives: B-H···Ĩ€ Interactions between the B-H-B Hydrogen Atom and Alkyne Group in 10-RC≡CCH2S(Me)-7,8-C2B9H11. European Journal of Inorganic Chemistry, 2017, 2017, 4436-4443.	1.0	34
65	A Highly Potent Antibacterial Agent Targeting Methicillin-Resistant <i>Staphylococcus aureus</i> Based on Cobalt Bis(1,2-Dicarbollide) Alkoxy Derivative. Organometallics, 2017, 36, 3484-3490.	1.1	50
66	Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Physical Chemistry Chemical Physics, 2017, 19, 25122-25128.	1.3	29
67	Methylsulfanylâ€Stabilized Rotamers of Cobalt Bis(dicarbollide). European Journal of Inorganic Chemistry, 2017, 2017, 4444-4451.	1.0	29
68	New sulfur derivatives of carboranes and metallacarboranes. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 192-196.	0.8	5
69	New carborane-containing acids and amines. Russian Chemical Bulletin, 2017, 66, 1643-1649.	0.4	18
70	Ferrocene and Transition Metal Bis(Dicarbollides) as Platform for Design of Rotatory Molecular Switches. Molecules, 2017, 22, 2201.	1.7	25
71	Pharmacokinetics of Chlorin e6-Cobalt Bis(Dicarbollide) Conjugate in Balb/c Mice with Engrafted Carcinoma. International Journal of Molecular Sciences, 2017, 18, 2556.	1.8	10
72	Silver and Copper Complexes with closo-Polyhedral Borane, Carborane and Metallacarborane Anions: Synthesis and X-ray Structure. Crystals, 2016, 6, 60.	1.0	71

#	Article	IF	Citations
73	On the reaction of nido-carborane with thiourea. Russian Chemical Bulletin, 2016, 65, 2704-2707.	0.4	6
74	Unprecedented flexibility of the $1,1\hat{a}\in^2$ -bis(o-carborane) ligand: catalytically-active species stabilised by B-agostic B $\hat{a}\in^{\text{"H}}\hat{a}$ ‡ \in Ru interactions. Dalton Transactions, 2016, 45, 1127-1137.	1.6	40
75	Facile synthesis of closo-nido bis(carborane) and its highly regioselective halogenation. Journal of Organometallic Chemistry, 2016, 805, 1-5.	0.8	17
76	Tetrathiafulvalene-based radical cation salts with transition metal bis(dicarbollide) anions. CrystEngComm, 2015, 17, 4754-4767.	1.3	24
77	Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. Journal of Organometallic Chemistry, 2015, 798, 196-203.	0.8	24
78	Cobaltacarborane functionalized phthalocyanines: Synthesis, photophysical, electrochemical and spectroelectrochemical properties. Synthetic Metals, 2015, 210, 376-385.	2.1	13
79	Synthesis of 9,9´,12,12´-substituted cobalt bis(dicarbollide) derivatives. Russian Chemical Bulletin, 2015, 64, 712-717.	0.4	14
80	Tungsten carbonyl $\ddot{l}f$ -complexes with charge-compensated nido-carboranyl thioether ligands. Dalton Transactions, 2015, 44, 6449-6456.	1.6	14
81	Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Transactions, 2015, 44, 9860-9871.	1.6	16
82	The C-substituted charge-compensated dicarbollide [7-SMe2-7,8-C2B9H10]â´´: Synthesis and room-temperature rearrangement of the iridium complex. Inorganic Chemistry Communication, 2015, 51, 80-82.	1.8	9
83	Synthesis and <i>in vitro</i> study of new highly boronated phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2014, 18, 960-966.	0.4	14
84	Synthesis of new acids based on bis(dicarbollide)cobalt. Russian Chemical Bulletin, 2014, 63, 2334-2337.	0.4	5
85	Transition metal complexes with charge-compensated dicarbollide ligands. Journal of Organometallic Chemistry, 2014, 751, 221-250.	0.8	36
86	Direct synthesis of nido-carborane derivatives with pendant functional groups by copper-promoted reactions with dimethylalkylamines. Journal of Organometallic Chemistry, 2014, 757, 21-27.	0.8	25
87	Lewis acidity of boron compounds. Coordination Chemistry Reviews, 2014, 270-271, 75-88.	9.5	278
88	A new approach to the synthesis of functional derivatives of nido-carborane: alkylation of [9-MeS-nido-7,8-C ₂ B ₉ H ₁₁] ^{â^'} . Dalton Transactions, 2014, 43, 5044-5053.	1.6	25
89	Synthesis of new ï‰-amino- and ï‰-azidoalkyl carboranes. New Journal of Chemistry, 2013, 37, 3865.	1.4	17
90	Synthesis of podands with nido-carboranyl groups as a basis for construction of crown ethers with an incorporated metallacarborane moiety. Russian Chemical Bulletin, 2013, 62, 699-704.	0.4	13

#	Article	IF	CITATIONS
91	Synthesis of new carborane-based amino acids. Polyhedron, 2013, 55, 117-120.	1.0	21
92	Molecular conductors with anti-7,7 \hat{a} \in 2:8,8 \hat{a} \in 2-bis(dithio)bis(7,8-dicarbaundecaborate) anion. Inorganic Chemistry Communication, 2013, 33, 109-113.	1.8	4
93	On relative electronic effects of polyhedral boron hydrides. Journal of Organometallic Chemistry, 2013, 747, 254-256.	0.8	23
94	Chlorin e6 fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochemical and Photobiological Sciences, 2013, 13, 92-102.	1.6	38
95	Boron-Containing Phthalocyanines and Porphyrazines. Macroheterocycles, 2012, 5, 292-301.	0.9	13
96	Halogenation of the 7,8-dicarba-nido-undecaborate anion derivatives [10-RO-7,8-C2B9H11]â~. Russian Journal of General Chemistry, 2012, 82, 91-94.	0.3	3
97	Synthesis and structure of fluorophenyl derivatives of the 10-vertex monocarbaborane anions [1-CB9H10]â°' and [2-CB9H10]â°'. Journal of Fluorine Chemistry, 2012, 142, 14-18.	0.9	8
98	Mild C–H activation of activated aromatics with [8,8′-ν-I-3,3′-Co(1,2-C2B9H10)2]: Just mix them. Journal Organometallic Chemistry, 2012, 721-722, 70-77.	of.8	25
99	Tungsten carbonyl Ïf-complexes of nido-carborane thioethers. Journal of Organometallic Chemistry, 2012, 721-722, 92-96.	0.8	18
100	New Fulvalenium Salts of Cobalt Bis(dicarbollide): Crystal Structures and Electrical Conductivities. Crystals, 2012, 2, 43-55.	1.0	10
101	Cobalt bis(dicarbollide) versus closo-dodecaborate in boronated chlorin e6 conjugates: implications for photodynamic and boron-neutron capture therapy. Photochemical and Photobiological Sciences, 2012, 11, 645-652.	1.6	41
102	Synthesis, structure, electrical and magnetic properties of (BEDT-TTF)2[3,3′-Fe(1,2-C2B9H11)2]. Inorganic Chemistry Communication, 2012, 15, 106-108.	1.8	15
103	Molecular Conductors with a 8-Hydroxy cobalt Bis(dicarbollide) Anion. Inorganic Chemistry, 2011, 50, 444-450.	1.9	29
104	Synthesis of hetero-substituted derivatives of cobalt bis(1,2-dicarbollide). Russian Chemical Bulletin, 2011, 60, 2354-2358.	0.4	12
105	Conjugates of polyhedral boron compounds with carbohydrates 8. Synthesis and properties of nido-ortho-carborane glycoconjugates containing one to three \hat{l}^2 -lactosylamine residues. Russian Chemical Bulletin, 2011, 60, 2359-2364.	0.4	12
106	Synthesis of boron-containing tyrosine derivatives based on the closo-decaborate and closo-dodecaborate anions. Russian Chemical Bulletin, 2011, 60, 2550-2554.	0.4	19
107	Synthesis of conjugates of polyhedral boron compounds with tumor-seeking molecules for neutron capture therapy. Applied Radiation and Isotopes, 2011, 69, 1774-1777.	0.7	18
108	New conjugates of cobalt bis(dicarbollide) with chlorophyll a derivatives. Mendeleev Communications, 2011, 21, 84-86.	0.6	31

#	Article	IF	Citations
109	Synthesis of carboxylic acids based on the closo-decaborate anion. Polyhedron, 2011, 30, 1494-1501.	1.0	29
110	Synthesis, structure and electrical conductivity of fulvalenium salts of cobalt bis(dicarbollide) anion and its derivatives. Journal of Chemical Sciences, 2010, 122, 37-41.	0.7	18
111	Synthesis of cobalt bis(dicarbollide) conjugates with natural chlorins by the Sonogashira reaction. Russian Chemical Bulletin, 2010, 59, 219-224.	0.4	18
112	Synthesis, structures, and conductivities of salts (BEDT-TTF)[9,9â€ 2 (12â€ 2)-I2-3,3â€ 2 -Co(1,2-C2B9H10)2] and (TTF)[9,9â€ 2 ,12,12â€ 2 -I4-3,3â€ 2 -Co(1,2-C2B9H9)2]. Russian Chemical Bulletin, 2010, 59, 1137-1144.	0.4	17
113	A novel approach to the synthesis of amino acids based on cobalt bis(dicarbollide). Russian Chemical Bulletin, 2010, 59, 2302-2308.	0.4	12
114	Synthesis of monosubstituted functional derivatives of carboranes from 1-mercapto-ortho-carborane: 1-HOOC(CH ₂) _n S-1,2-C ₂ B ₁₀ H ₁₁ and [7-HOOC(CH ₂) _n S-7,8-C ₂ B ₉ H ₁₁] _{]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂H₁₁]_{and [7-HOOC(CH₂]_{and [7-HOOC}}}}}}}}}}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	1.6 >(n) Tj ET	28 'Qq0 0 0 rgB'
115	Fifty years of the closo-decaborate anion chemistry. Collection of Czechoslovak Chemical Communications, 2010, 75, 1149-1199.	1.0	154
116	Câ^'H Bond Activation of Arenes by [8,8′-ι¼-I-3,3′-Co(1,2-C ₂ B ₉ H ₁₀) ₂] in the Presence of Sterically Hindered Lewis Bases. Organometallics, 2010, 29, 5366-5372.	1.1	40
117	Polyhedral Boranes for Medical Applications: Current Status and Perspectives. European Journal of Inorganic Chemistry, 2009, 2009, 1433-1450.	1.0	310
118	Novel types of boronated chlorin <i>e</i> ₆ conjugates via â€~click chemistry'. Applied Organometallic Chemistry, 2009, 23, 370-374.	1.7	45
119	Conjugates of polyhedral boron compounds with carbohydrates 6. Synthesis of glycoconjugates of closo-ortho-carborane with $\hat{\Gamma}^2$ -lactosylamine and $\hat{\Gamma}^2$ -d-galactopyranosylamine derivatives as galectin biand trivalent ligands. Russian Chemical Bulletin, 2009, 58, 446-449.	0.4	6
120	Interaction of polyhedral boron hydride anions [B10H10]2â^' and [B12H12]2â^' with cyclic copper and silver 3,5-bis(trifluoromethyl)pyrazolate complexes. Journal of Organometallic Chemistry, 2009, 694, 1704-1707.	0.8	17
121	Molecular conductors with 8,8′-diiodo cobalt bis(dicarbollide) anion. Journal of Organometallic Chemistry, 2009, 694, 2336-2342.	0.8	48
122	New approach to incorporation of boron in tumor-seeking molecules. Applied Radiation and Isotopes, 2009, 67, S91-S93.	0.7	23
123	Conjugates of boron clusters with derivatives of natural chlorin and bacteriochlorin. Applied Radiation and Isotopes, 2009, 67, S101-S104.	0.7	27
124	New boron-containing bacteriochlorin p cycloimide conjugate. Russian Chemical Bulletin, 2008, 57, 2230-2232.	0.4	19
125	Practical synthesis of 1,4-dioxane derivative of the closo-dodecaborate anion and its ring opening with acetylenic alkoxides. Journal of Organometallic Chemistry, 2008, 693, 519-525.	0.8	60
126	First molecular conductors with 8,8′-dibromo cobalt bis(dicarbollide) anion. Solid State Sciences, 2008, 10, 1734-1739.	1.5	37

#	Article	IF	Citations
127	Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Transactions, 2008, , 977.	1.6	176
128	L-4-Boronophenylalanine (All around the one molecule). Arkivoc, 2008, 2008, 47-61.	0.3	19
129	Study of Proton-Deuterium Exchange in Ten-Vertex Boron Hydrides. Collection of Czechoslovak Chemical Communications, 2007, 72, 1725-1739.	1.0	8
130	<i>In Vitro</i> Evaluation of Two Polyhedral Boron Anion Derivatives as Linkers for Attachment of Radioiodine to the Anti-HER2 Monoclonal Antibody Trastuzumab. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 585-596.	0.7	4
131	Synthesis of Alkoxy Derivatives of Decahydro-closo-decaborate Anion. Collection of Czechoslovak Chemical Communications, 2007, 72, 1689-1696.	1.0	16
132	Synthesis of Functional Derivatives of 7,8-Dicarba-nido-undecaborate Anion by Ring-Opening of Its Cyclic Oxonium Derivatives. Collection of Czechoslovak Chemical Communications, 2007, 72, 1676-1688.	1.0	44
133	Synthesis of novel derivatives ofcloso-dodecaborate anion with azido group at the terminal position of the spacer. Applied Organometallic Chemistry, 2007, 21, 98-100.	1.7	33
134	New fulvalenium salts of bis(dicarbollide) cobalt and iron: Synthesis, crystal structure and electrical conductivity. Journal of Organometallic Chemistry, 2007, 692, 5033-5043.	0.8	36
135	Synthesis and structure of halogen derivatives of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-Me2S-7,8-C2B9H11]. Journal of Organometallic Chemistry, 2007, 692, 5133-5140.	0.8	11
136	Synthesis of dihalo derivatives of the 7,8-dimethyldecahydro-7,8-dicarba-nido-undecaborate anion. Russian Chemical Bulletin, 2007, 56, 922-925.	0.4	7
137	[1-B10H9N2]â^' and [1-CB9H10]â^' anions: an attempt of quantum chemical calculations. Russian Chemical Bulletin, 2007, 56, 1918-1921.	0.4	2
138	Conjugates of polyhedral boron compounds with carbohydrates. Russian Chemical Bulletin, 2007, 56, 2105-2108.	0.4	7
139	Synthesis of O-bonded derivatives of closo-dodecaborate anion. [B12]-[C2B10] double cage boron compounds $\hat{a} \in \hat{a}$ new approach to synthesis of BNCT agents. Special Publication - Royal Society of Chemistry, 2007, , 135-138.	0.0	2
140	Synthesis of schiff bases and monoalkylamino derivatives of closo-dodecaborate(2-) anion. Special Publication - Royal Society of Chemistry, 2007, , 163-166.	0.0	1
141	Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting Affibody ligand. International Journal of Molecular Medicine, 2007, 19, 485-93.	1.8	8
142	Competition between non-classical and classical hydrogen bonded sites in [BH3CN]â^: Spectral, energetic, structural and electronic features. Journal of Molecular Structure, 2006, 790, 114-121.	1.8	14
143	Electrochemical iodination of C-methyl derivatives of dodecahydro-7,8-dicarba-nido-undecaborate anion. Russian Journal of Electrochemistry, 2006, 42, 280-284.	0.3	10
144	Synthesis, structure and electrical conductivity of fulvalenium salts of cobalt bis(dicarbollide) anion. Journal of Organometallic Chemistry, 2006, 691, 4225-4233.	0.8	27

#	Article	IF	CITATIONS
145	Conjugates of polyhedral boron compounds with carbohydrates. 4. hydrolytic stability of carborane–lactose conjugates depends on the structure of a spacer between the carborane cage and sugar moiety. Applied Organometallic Chemistry, 2006, 20, 416-420.	1.7	38
146	Polyhedral Boron Compounds as Potential Diagnostic and Therapeutic Antitumor Agents. Anti-Cancer Agents in Medicinal Chemistry, 2006, 6, 75-109.	0.9	128
147	Radio-iodination of monoclonal antibody using potassium [1251]-(4-isothiocyanatobenzylammonio)-iodo-decahydro-closo-dodecaborate (iodo-DABI). Anticancer Research, 2006, 26, 1217-23.	0.5	10
148	The synthesis of functional derivatives of the [1-CB9H10]â° anion by Brellochs reaction. Journal of Organometallic Chemistry, 2005, 690, 2790-2795.	0.8	22
149	Synthesis of the 1-hydroxy-closo-decaborate anion [1-B10H9OH]2â^'. Journal of Organometallic Chemistry, 2005, 690, 2847-2849.	0.8	22
150	Conjugates of polyhedral boron compounds with carbohydrates. 2. Unexpected easy closo- to nido-transformation of a carborane–carbohydrate conjugate in neutral aqueous solution. Journal of Organometallic Chemistry, 2005, 690, 2769-2774.	0.8	24
151	Synthesis of the 1-Hydroxy-closo-decaborate Anion [1-B10H9OH]2 ChemInform, 2005, 36, no.	0.1	0
152	Conjugates of polyhedral boron compounds with carbohydrates 3. The first synthesis of a conjugate of the dodecaborate anion with a disaccharide lactose as a potential agent for boron neutron capture therapy of cancer. Russian Chemical Bulletin, 2005, 54, 1352-1353.	0.4	12
153	Electrochemical thiocyanation of dodecahydro-7,8-dicarba-nido-undecaborate and 7,8-dimethyldecahydro-7,8-dicarba-nido-undecaborate monoanions. Russian Chemical Bulletin, 2005, 54, 1599-1602.	0.4	11
154	Palladium-Catalyzed Alkynylation of 2-lodo-p-carboranes and 9-lodo-m-carboranes. Russian Journal of Organic Chemistry, 2005, 41, 1359-1366.	0.3	11
155	Hydrogen bonding of the undecahydro-thiocyanato-closo-dodecaborate anion with proton donors. Main Group Chemistry, 2005, 4, 97-110.	0.4	7
156	Targeting of a Head and Neck Squamous Cell Carcinoma Xenograft Model Using the Chimeric Monoclonal Antibody U36 Radioiodinated with a closo-Dodecaborate-containing Linker. Acta Oto-Laryngologica, 2004, 124, 1078-1085.	0.3	6
157	Substitution reactions at boron atoms in metallacarboranes. Russian Chemical Reviews, 2004, 73, 433-453.	2.5	51
158	Radioiodination of ammonio-closo-monocarborane, 1-H3N-1-CB11H11. Aspects of labelling chemistry in aqueous solution using Chloramine-T. Radiochimica Acta, 2004, 92, 311-315.	0.5	2
159	New B-substituted derivatives of m-carborane, p-carborane, and cobalt bis(1,2-dicarbollide) anion. Journal of Organometallic Chemistry, 2004, 689, 2920-2929.	0.8	41
160	Synthesis of Schiff bases and benzylamino derivatives containing [1-B10H9NH3]â° anion. Russian Chemical Bulletin, 2004, 53, 2092-2095.	0.4	7
161	Electrochemical synthesis of halogen derivatives of bis(1,2-dicarbollyl)cobalt(III). Russian Chemical Bulletin, 2004, 53, 2554-2557.	0.4	16
162	Radiobromination of monoclonal antibody using potassium [76Br] (4) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 To	d (isothiod	cyanatobenzy 38

Medicine and Biology, 2004, 31, 205-211.

#	Article	IF	Citations
163	Title is missing!. Russian Chemical Bulletin, 2003, 52, 594-600.	0.4	7
164	Conjugates of polyhedral boron compounds with carbohydrates. 1. New approach to the design of selective agents for boron neutron capture therapy of cancer. Russian Chemical Bulletin, 2003, 52, 2766-2768.	0.4	13
165	[C2B10]î—,[B12] double cage boron compoundsâ€"a new approach to the synthesis of water-soluble boron-rich compounds for BNCT. Journal of Organometallic Chemistry, 2003, 680, 106-110.	0.8	18
166	Chameleonic Capacity of [3,3â€~-Co(1,2-C2B9H11)2]- in Coordination. Generation of the Highly Uncommon S(thioether)â^Na Bond. Organometallics, 2003, 22, 3414-3423.	1.1	107
167	Radiobromination of closo-dodecaborate anion. Aspects of labelling chemistry in aqueous solution using Chloramine-T. Radiochimica Acta, 2002, 90, 229-235.	0.5	41
168	Chemistry of closo-Dodecaborate Anion [B12H12]2-: A Review. Collection of Czechoslovak Chemical Communications, 2002, 67, 679-727.	1.0	269
169	Synthesis of functional derivatives of the [3,3′-Co(1,2-C2B9H11)2]â^³ anion. Journal of Organometallic Chemistry, 2002, 649, 1-8.	0.8	94
170	Dihydrogen bonding of decahydro-closo-decaborate(2â^') and dodecahydro-closo-dodecaborate(2â^') anions with proton donors: experimental and theoretical investigation. Journal of Organometallic Chemistry, 2002, 657, 155-162.	0.8	36
171	Synthesis and derivatization of the 2-amino-closo-decaborate anion [2-B10H9NH3]â^. Journal of Organometallic Chemistry, 2002, 657, 163-170.	0.8	42
172	Palladium-catalyzed cross-coupling reactions of arylboronic acids and 2-I-p-carborane. Journal of Organometallic Chemistry, 2002, 657, 267-272.	0.8	33
173	Derivatives of the closo-dodecaborate anion and their application in medicine. Russian Chemical Bulletin, 2002, 51, 1362-1374.	0.4	94
174	Polyhedral boron derivatives of porphyrins and phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2001, 05, 767-781.	0.4	74
175	Crown Compounds for Anions: Sandwich and Half-Sandwich Complexes of Cyclic Trimeric Perfluoro-o-phenylenemercury with Polyhedralcloso-[B10H10]2â^' andcloso-[B12H12]2â^' Anions. Chemistry - A European Journal, 2001, 7, 3783-3790.	1.7	53
176	Title is missing!. Russian Chemical Bulletin, 2001, 50, 1115-1116.	0.4	10
177	Chemistry of nickel and iron bis(dicarbollides). A review. Journal of Organometallic Chemistry, 2000, 614-615, 27-36.	0.8	67
178	Synthesis of oxonium derivatives of the dodecahydro-closo-dodecaborate anion [B12H12]2â^'. Tetramethylene oxonium derivative of [B12H12]2â^' as a convenient precursor for the synthesis of functional compounds for boron neutron capture therapy. Polyhedron, 2000, 19, 627-632.	1.0	100
179	Synthesis of alkoxy derivatives of dodecahydro-closo-dodecaborate anion [B12H12]2â^'. Tetrahedron Letters, 1999, 40, 3451-3454.	0.7	43
180	Synthesis of Schiff Bases Derived from the Ammoniaundecahydro-closo-dodecaborate(1â^) Anion, [B12H11NHCHR]-, and Their Reduction into Monosubstituted Amines [B12H11NH2CH2R]-:  A New Route to Water Soluble Agents for BNCT. Inorganic Chemistry, 1999, 38, 5887-5893.	1.9	64

#	Article	IF	CITATIONS
181	Chemistry of Cobalt Bis(dicarbollides). A Review. Collection of Czechoslovak Chemical Communications, 1999, 64, 783-805.	1.0	234
182	Closo-Dodecaborate(2-) as a Linker for Iodination of Macromolecules. Aspects on Conjugation Chemistry and Biodistribution. Bioconjugate Chemistry, 1999, 10, 338-345.	1.8	34
183	A mild synthesis of the [B12H11CO]â^' anion. Russian Chemical Bulletin, 1998, 47, 193-194.	0.4	3
184	Synthesis and NMR spectra of the hydroxyundecahydro-closo-dodecaborate [B12H11OH]2? and its acylated derivatives. Russian Chemical Bulletin, 1996, 45, 683-686.	0.4	15
185	New Electroconducting Radical Cation Salts Based on BEDT-TTF with 8,8'-Dibromo Cobalt Bis(Dicarbollide) Anion. Advances in Science and Technology, 0, , .	0.2	4
186	Comparison of benzoate- and dodecaborate-based linkers for attachment of radioiodine to HER2-targeting Affibody ligand. International Journal of Molecular Medicine, 0, , .	1.8	6