Thomas Loimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5001435/publications.pdf

Version: 2024-02-01

		1937685	1588992	
13	59	4	8	
papers	citations	h-index	g-index	
13	13	13	20	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Mass flow and momentum flux in nanoporous membranes in the transitional flow region. Physical Chemistry Chemical Physics, 2021, 23, 17134-17141.	2.8	1
2	The curvature of an evaporating meniscus in a pressure driven flow through cylindrical pores. Proceedings in Applied Mathematics and Mechanics, 2019, 19, e201900114.	0.2	1
3	Consideration of the Joule-Thomson effect for the transport of vapor through anodic alumina membranes under conditions of capillary condensation. Separation and Purification Technology, 2019, 215, 548-556.	7.9	8
4	Comparison of the Flow of Permanent and Condensable Gases through an Asymmetric Porous Membrane. Chemie-Ingenieur-Technik, 2016, 88, 1779-1787.	0.8	2
5	Influence of the flow direction on the mass transport of vapors through membranes consisting of several layers. Experimental Thermal and Fluid Science, 2015, 67, 2-5.	2.7	3
6	Large mass flux differences for opposite flow directions of a condensable gas through an asymmetric porous membrane. Journal of Membrane Science, 2014, 470, 451-457.	8.2	15
7	The flow of vapors through porous ceramic membranes consisting of several layers. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 685-686.	0.2	0
8	Measurements on the flow of vapors near saturation through porous Vycor glass membranes. , 2012, , .		0
9	The flow of butane and isobutane vapors near saturation through porous Vycor glass membranes. Journal of Membrane Science, 2011, 383, 104-115.	8.2	14
10	The Effect of the Contact Angle on a Flow With Condensation and Evaporation Through a Microchannel. , 2008, , .		1
11	Linearized description of the non-isothermal flow of a saturated vapor through a micro-porous membrane. Journal of Membrane Science, 2007, 301, 107-117.	8.2	12
12	Linearized description of the flow of a vapor with condensation and evaporation through a micro-porous membrane. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 4100037-4100038.	0.2	0
13	A Joule-Thomson process with condensation and evaporation. Proceedings in Applied Mathematics and Mechanics, 2003, 3, 390-391.	0.2	2