Wei Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/500101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7756-7761.	7.1	378
2	Challenges faced by China compared with the US in developing wind power. Nature Energy, 2016, 1, .	39.5	153
3	Reduction of solar photovoltaic resources due to air pollution in China. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11867-11872.	7.1	112
4	Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China. Applied Energy, 2018, 218, 511-519.	10.1	100
5	The impact of human health co-benefits on evaluations of global climate policy. Nature Communications, 2019, 10, 2095.	12.8	99
6	Managing China's coal power plants to address multiple environmental objectives. Nature Sustainability, 2018, 1, 693-701.	23.7	98
7	Air quality, health, and climate implications of China's synthetic natural gas development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4887-4892.	7.1	90
8	Enabling a Rapid and Just Transition away from Coal in China. One Earth, 2020, 3, 187-194.	6.8	83
9	Climate policy models need to get real about people — here's how. Nature, 2021, 594, 174-176.	27.8	81
10	Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8206-8213.	7.1	78
11	Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China. Science of the Total Environment, 2017, 598, 1076-1084.	8.0	73
12	Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030. Environmental Research Letters, 2018, 13, 064002.	5.2	53
13	Association Between Changes in Exposure to Air Pollution and Biomarkers of Oxidative Stress in Children Before and During the Beijing Olympics. American Journal of Epidemiology, 2015, 181, 575-583.	3.4	50
14	Air quality–carbon–water synergies and trade-offs in China's natural gas industry. Nature Sustainability, 2018, 1, 505-511.	23.7	49
15	Climate action with revenue recycling has benefits for poverty, inequality and well-being. Nature Climate Change, 2021, 11, 1111-1116.	18.8	39
16	Air quality and climate benefits of long-distance electricity transmission in China. Environmental Research Letters, 2017, 12, 064012.	5.2	31
17	The surprisingly inexpensive cost of state-driven emission control strategies. Nature Climate Change, 2021, 11, 738-745.	18.8	28
18	The Critical Role of Policy Enforcement in Achieving Health, Air Quality, and Climate Benefits from India's Clean Electricity Transition. Environmental Science & Technology, 2020, 54, 11720-11731.	10.0	22

Wei Peng

#	Article	IF	CITATIONS
19	Clean air actions in China, PM2.5 exposure, and household medical expenditures: A quasi-experimental study. PLoS Medicine, 2021, 18, e1003480.	8.4	22
20	Opportunities for household energy on the Qinghai-Tibet Plateau in line with United Nations' Sustainable Development Goals. Renewable and Sustainable Energy Reviews, 2021, 144, 110982.	16.4	14
21	Cross-state air pollution transport calls for more centralization in India's environmental federalism. Atmospheric Pollution Research, 2020, 11, 1797-1804.	3.8	13
22	Protecting the poor with a carbon tax and equal per capita dividend. Nature Climate Change, 2021, 11, 1025-1026.	18.8	11
23	Energy Use for Electricity Generation Requires an Assessment More Directly Relevant to Climate Change. ACS Energy Letters, 2020, 5, 3514-3517.	17.4	10
24	The importance of health co-benefits under different climate policy cooperation frameworks. Environmental Research Letters, 2021, 16, 055027.	5.2	10
25	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	10.0	10
26	Incorporating political-feasibility concerns into the assessment of India's clean-air policies. One Earth, 2021, 4, 1163-1174.	6.8	10
27	Potential Uses of Coal Methane in China and Associated Benefits for Air Quality, Health, and Climate. Environmental Science & Technology, 2020, 54, 12447-12455.	10.0	9
28	Emissions and Health Implications of Pennsylvania's Entry into the Regional Greenhouse Gas Initiative. Environmental Science & Technology, 2021, 55, 12153-12161.	10.0	9
29	An ultra-low emission coal power fleet for cleaner but not hotter air. Environmental Research Letters, 2020, 15, 091002.	5.2	4
30	Trade-offs for equitable climate policy assessed. Nature, 2020, 588, 225-226.	27.8	2
31	To achieve deep cuts in US emissions, state-driven policy is only slightly more expensive than nationally uniform policy. Nature Climate Change, 2021, 11, 911-912.	18.8	1
32	Air quality-related health co-benefits from Pennsylvania's entry into the Regional Greenhouse Gas Initiative (RGGI). ISEE Conference Abstracts, 2021, 2021, .	0.0	0
33	Coordinating Strategies to Reduce Air Pollution and Carbon Emissions in China. , 2021, , 157-167.		0