
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5000942/publications.pdf Version: 2024-02-01

Χιανημαι Ζένις

#	Article	IF	CITATIONS
1	Construction of Synergistic Co and Cu Diatomic Sites for Enhanced Higher Alcohol Synthesis. CCS Chemistry, 2023, 5, 851-864.	4.6	4
2	Heterogeneously-catalyzed aerobic oxidation of furfural to furancarboxylic acid with CuO-Promoted MnO2. Green Energy and Environment, 2023, 8, 1683-1692.	4.7	1
3	Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing. Chemical Engineering Journal, 2022, 427, 131896.	6.6	48
4	Boosting the lattice oxygen activity of Fe-catalyst for producing 2,5-diformylfuran from 5-hydroxymethylfurfural. Fuel, 2022, 308, 122069.	3.4	15
5	Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Carbohydrate Polymers, 2022, 276, 118783.	5.1	19
6	Aqueousâ€Natural Deep Eutectic Solventâ€Enhanced 5â€Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. ChemSusChem, 2022, 15, .	3.6	30
7	Rapid polymerization of conductive hydrogels with multifunctionality initiated by lignin-tin organometallic compounds. Materials Today Chemistry, 2022, 23, 100662.	1.7	7
8	Aerobic oxidation of 5-[(formyloxy)methyl]furfural to 2,5-furandicarboxylic acid over MoCuOx catalyst. Molecular Catalysis, 2022, 517, 111986.	1.0	3
9	A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor. Cellulose, 2022, 29, 341-354.	2.4	18
10	Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural. Green Energy and Environment, 2022, 7, 900-932.	4.7	38
11	Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydrate Polymers, 2022, 280, 119018.	5.1	47
12	Preparation of CH3NH3PbBr3 perovskite quantum dots composites with high photoluminescence quantum yield and good stability. Journal of Luminescence, 2022, 245, 118749.	1.5	4
13	Insight into the Mars-van Krevelen mechanism for production 2,5-diformylfuran over FeNx@C catalyst. Biomass and Bioenergy, 2022, 156, 106320.	2.9	11
14	Efficient synthesis of 2,5-furandicarboxylic acid from biomass-derived 5-hydroxymethylfurfural in 1,4-dioxane/H2O mixture. Applied Catalysis A: General, 2022, 630, 118463.	2.2	13
15	Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. Nano-Micro Letters, 2022, 14, 84.	14.4	31
16	Efficient supercritical carbon dioxide promoted reductive amination of furfural using water as hydrogen donor over Ni/CaCO3. Journal of Cleaner Production, 2022, 345, 131029.	4.6	5
17	Solvent-mediated Zr-based coordination polymer with tunable acid properties for the dehydration of fructose and catalytic transfer hydrogenation of 5-hydroxymethylfurfural. Molecular Catalysis, 2022, 524, 112253.	1.0	3
18	Insight into the catalytic mechanism of core–shell structured Ni/Ni-N/CN catalyst towards the oxidation of furfural to furancarboxylic acid. Fuel, 2022, 317, 123579.	3.4	11

#	Article	IF	CITATIONS
19	Boosting the Acid Sites and Lattice Oxygen Activity of the Fe–Cu Catalyst for One-Pot Producing 2,5-Diformylfuran from Fructose. ACS Sustainable Chemistry and Engineering, 2022, 10, 421-430.	3.2	15
20	Removal of copper ions by cellulose nanocrystal-based hydrogel and reduced adsorbents for its catalytic properties. Cellulose, 2022, 29, 4525-4537.	2.4	10
21	Facile One-Pot Synthesis of Furan Double Schiff Base from 5-Hydroxymethylfurfural via an Amination–Oxidation–Amination Strategy in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 6835-6842.	3.2	5
22	Efficient 5-hydroxymethylfurfural synthesis from carbohydrates and food wastes in aqueous-natural deep eutectic solvent (A-NADES) with robust Al2O3 or Al(OH)3. Fuel, 2022, 326, 125062.	3.4	7
23	Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst. Chinese Chemical Letters, 2021, 32, 1186-1190.	4.8	34
24	Effective selectivity conversion of glucose to furan chemicals in the aqueous deep eutectic solvent. Renewable Energy, 2021, 164, 23-33.	4.3	43
25	Facile fabrication of super-hydrophilic cellulose hydrogel-coated mesh using deep eutectic solvent for efficient gravity-driven oil/water separation. Cellulose, 2021, 28, 949-960.	2.4	14
26	Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydrate Polymers, 2021, 255, 117443.	5.1	52
27	Lignin degradation in cooking with active oxygen and solid Alkali process: A mechanism study. Journal of Cleaner Production, 2021, 278, 123984.	4.6	16
28	Green Process for 5â€(Chloromethyl)furfural Production from Biomass in Three onstituent Deep Eutectic Solvent. ChemSusChem, 2021, 14, 847-851.	3.6	14
29	Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation. Separation and Purification Technology, 2021, 254, 117577.	3.9	73
30	Choline chloride-promoted efficient solvent-free hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Ru/C. Green Chemistry, 2021, 23, 1983-1988.	4.6	18
31	Insights into the catalytic mechanism of 5-hydroxymethfurfural to phthalic anhydride with MoO ₃ /Cu(NO ₃) ₂ in one-pot. Catalysis Science and Technology, 2021, 11, 5656-5662.	2.1	12
32	Catalytic Conversion of Biomass to Furanic Derivatives with Deep Eutectic Solvents. ChemSusChem, 2021, 14, 1496-1506.	3.6	42
33	Molecular mechanism of arachidonic acid biosynthesis in Porphyridium purpureum promoted by nitrogen limitation. Bioprocess and Biosystems Engineering, 2021, 44, 1491-1499.	1.7	3
34	Highly selective ring rearrangement of 5-hydroxymethylfurfural to 3-hydroxymethylcyclopentanon catalyzed by non-noble Ni-Fe/Al2O3. Molecular Catalysis, 2021, 505, 111505.	1.0	13
35	<i>In Situ</i> Encapsulated CuCo@M-SiO ₂ for Higher Alcohol Synthesis from Biomass-Derived Syngas. ACS Sustainable Chemistry and Engineering, 2021, 9, 5910-5923.	3.2	21
36	Domino transformation of furfural to γ-valerolactone over SAPO-34 zeolite supported zirconium phosphate catalysts with tunable Lewis and BrÃ,nsted acid sites. Molecular Catalysis, 2021, 506, 111538.	1.0	19

#	Article	IF	CITATIONS
37	Green and mild production of 5-aminolevulinic acid from algal biomass. Korean Journal of Chemical Engineering, 2021, 38, 899-905.	1.2	3
38	Inducing Electron Dissipation of Pyridinic N Enabled by Single Ni–N ₄ Sites for the Reduction of Aldehydes/Ketones with Ethanol. ACS Catalysis, 2021, 11, 6398-6405.	5.5	43
39	Highly dispersed Co/N-rich carbon nanosheets for the oxidative esterification of biomass-derived alcohols: Insights into the catalytic performance and mechanism. Journal of Catalysis, 2021, 397, 148-155.	3.1	28
40	Vitamin C-Assisted Synthesized Mn–Co Oxides with Improved Oxygen Vacancy Concentration: Boosting Lattice Oxygen Activity for the Air-Oxidation of 5-(Hydroxymethyl)furfural. ACS Catalysis, 2021, 11, 7828-7844.	5.5	103
41	An efficient Pd/carbon-silica-alumina catalyst for the hydrodeoxygenation of bio-oil model compound phenol. Molecular Catalysis, 2021, 510, 111681.	1.0	6
42	Efficient Synthesis of Sugar Alcohols over a Synergistic and Sustainable Catalyst. Chinese Journal of Chemistry, 2021, 39, 2467-2476.	2.6	8
43	Low-temperature synthesis of zirconium silicate stabilized perovskite quantum dot composite material. Advanced Powder Technology, 2021, 32, 2798-2805.	2.0	4
44	Selective Oxidation of Furfural to 2(5H)-Furanone and Maleic Acid over CuMoO ₄ . ACS Sustainable Chemistry and Engineering, 2021, 9, 13176-13187.	3.2	13
45	The Crossâ€Linking Mechanism and Applications of Catechol–Metal Polymer Materials. Advanced Materials Interfaces, 2021, 8, 2100239.	1.9	18
46	Synthesis of bio-based 2-thiothiophenes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200350.	1.6	0
47	A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations. Renewable Energy, 2021, 179, 351-358.	4.3	9
48	An efficient approach to synthesizing 2,5-bis(<i>N</i> -methyl-aminomethyl)furan from 5-hydroxymethylfurfural <i>via</i> 2,5-bis(<i>N</i> -methyl-iminomethyl)furan using a two-step reaction in one pot. Green Chemistry, 2021, 23, 5656-5664.	4.6	8
49	Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50, 6042-6093.	18.7	104
50	Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12. Biotechnology for Biofuels, 2021, 14, 219.	6.2	14
51	Hepatoprotective effect of genistein against dimethylnitrosamine-induced liver fibrosis in rats by regulating macrophage functional properties and inhibiting the JAK2/STAT3/SOCS3 signaling pathway. Frontiers in Bioscience, 2021, 26, 1572-1584.	0.8	12
52	Synthesis of renewable monomer 2, 5-bishydroxymethylfuran from highly concentrated 5-hydroxymethylfurfural in deep eutectic solvents. Journal of Industrial and Engineering Chemistry, 2020, 81, 93-98.	2.9	20
53	Induced cultivation pattern enhanced the phycoerythrin production in red alga Porphyridium purpureum. Bioprocess and Biosystems Engineering, 2020, 43, 347-355.	1.7	12
54	Cascade conversion of furfural to fuel bioadditive ethyl levulinate over bifunctional zirconium-based catalysts. Renewable Energy, 2020, 147, 916-923.	4.3	54

#	Article	IF	CITATIONS
55	Insights into the active sites and catalytic mechanism of oxidative esterification of 5-hydroxymethylfurfural by metal-organic frameworks-derived N-doped carbon. Journal of Catalysis, 2020, 381, 570-578.	3.1	56
56	High expression of toxic Streptomyces phospholipase D in Escherichia coli under salt stress and its mechanism. AICHE Journal, 2020, 66, e16856.	1.8	3
57	Oneâ€Pot Synthesis of Renewable Phthalic Anhydride from 5â€Hydroxymethfurfural by using MoO ₃ /Cu(NO ₃) ₂ as Catalyst. ChemSusChem, 2020, 13, 640-646.	3.6	21
58	Extraction of cellulose nanocrystals using a recyclable deep eutectic solvent. Cellulose, 2020, 27, 1301-1314.	2.4	84
59	Processing of Microalgae to Biofuels. , 2020, , 111-128.		2
60	Eco-friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chemical Engineering Journal, 2020, 386, 124021.	6.6	58
61	Vertically-Oriented Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes for High Performance of Electrokinetic Energy Conversion. ACS Nano, 2020, 14, 16654-16662.	7.3	47
62	Interfacial assembly of self-healing and mechanically stable hydrogels for degradation of organic dyes in water. Communications Materials, 2020, 1, .	2.9	10
63	Effective Synthesis of a Biodiesel Precursor from Furan Derivatives at Room Temperature with NaHSO ₄ as a Recyclable Catalyst. Energy & Fuels, 2020, 34, 14275-14282.	2.5	2
64	Direct conversion of biomass derived <scp>l</scp> -rhamnose to 5-methylfurfural in water in high yield. Green Chemistry, 2020, 22, 5984-5988.	4.6	22
65	Cellulose Fibrils Extracted from Bamboo Chips as a Reinforcing Material for Prolonged Drug Release. ChemistrySelect, 2020, 5, 9957-9965.	0.7	4
66	Oxidation of 5-[(Formyloxy)methyl]furfural to Maleic Anhydride with Atmospheric Oxygen Using α-MnO ₂ /Cu(NO ₃) ₂ as Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 7901-7908.	3.2	28
67	Assembly of Zr-based coordination polymer over USY zeolite as a highly efficient and robust acid catalyst for one-pot transformation of fructose into 2,5-bis(isopropoxymethyl)furan. Journal of Catalysis, 2020, 389, 87-98.	3.1	16
68	Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydrate Polymers, 2020, 244, 116492.	5.1	40
69	Selective Electrocatalytic Oxidation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran: from Mechanistic Investigations to Catalyst Recovery. ChemSusChem, 2020, 13, 3060-3060.	3.6	3
70	Manganese catalyzed transfer hydrogenation of biomass-derived aldehydes: Insights to the catalytic performance and mechanism. Journal of Catalysis, 2020, 389, 157-165.	3.1	28
71	Effluent of biomass cooking with active oxygen and solid alkali (CAOSA): component separation, recovery and characterization. RSC Advances, 2020, 10, 16481-16489.	1.7	7
72	Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy, 2020, 2, .	6.3	25

#	Article	IF	CITATIONS
73	Efficient synthesis of bioâ€based monomer 2,5â€bishydroxymethylfuran by the solventâ€free hydrogenation of 5â€hydroxymethylfurfuralâ€based deep eutectic mixture. Journal of Chemical Technology and Biotechnology, 2020, 95, 1748-1755.	1.6	9
74	Catalytic Conversion of Biomassâ€Derived 2, 5â€Dimethylfuran into Renewable pâ€Xylene over SAPOâ€34 Catalyst. ChemistrySelect, 2020, 5, 2449-2454.	0.7	12
75	Facile and Efficient Two-Step Formation of a Renewable Monomer 2,5-Furandicarboxylic Acid from Carbohydrates over the NiO _{<i>x</i>} Catalyst. Industrial & Engineering Chemistry Research, 2020, 59, 4895-4904.	1.8	23
76	\hat{I}^3 -Valerolactone—an excellent solvent and a promising building block. , 2020, , 199-226.		7
77	Selective Electrocatalytic Oxidation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran: from Mechanistic Investigations to Catalyst Recovery. ChemSusChem, 2020, 13, 3127-3136.	3.6	45
78	Oxidative Esterification of 5â€Hydroxymethylfurfural with an Nâ€doped Carbonâ€supported CoCu Bimetallic Catalyst. ChemSusChem, 2020, 13, 4151-4158.	3.6	33
79	Selective oxidation of 5-formyloxymethylfurfural to 2, 5-furandicarboxylic acid with Ru/C in water solution. Korean Journal of Chemical Engineering, 2020, 37, 224-230.	1.2	9
80	SPZ1 promotes deregulation of Bim to boost apoptosis resistance in colorectal cancer. Clinical Science, 2020, 134, 155-167.	1.8	5
81	Hydrogenation of methyl levulinate to γâ€valerolactone over Cu─Mg oxide using MeOH as <i>in situ</i> hydrogen source. Journal of Chemical Technology and Biotechnology, 2019, 94, 167-177.	1.6	9
82	Cu ¹ –Cu ⁰ bicomponent CuNPs@ZIF-8 for highly selective hydrogenation of biomass derived 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 4319-4323.	4.6	52
83	Stable and Biocompatible Cellulose-Based CaCO ₃ Microspheres for Tunable pH-Responsive Drug Delivery. ACS Sustainable Chemistry and Engineering, 2019, 7, 19824-19831.	3.2	24
84	An efficient approach to produce 2,5â€diformylfuran from 5â€hydroxymethylfurfural using air as oxidant. Journal of Chemical Technology and Biotechnology, 2019, 94, 3832-3838.	1.6	24
85	Nasal instillation of probiotic extracts inhibits experimental allergic rhinitis. Immunotherapy, 2019, 11, 1315-1323.	1.0	9
86	Synthesis of MCMâ€41â€Supported Metal Catalysts in Deep Eutectic Solvent for the Conversion of Carbohydrates into 5â€Hydroxymethylfurfural. ChemSusChem, 2019, 12, 978-982.	3.6	42
87	Effective production of Î ³ -valerolactone from biomass-derived methyl levulinate over CuO -CaCO3 catalyst. Chinese Journal of Catalysis, 2019, 40, 192-203.	6.9	17
88	Spray-dried xylooligosaccharides carried by gum Arabic. Industrial Crops and Products, 2019, 135, 330-343.	2.5	22
89	A flexible Cu-based catalyst system for the transformation of fructose to furanyl ethers as potential bio-fuels. Applied Catalysis B: Environmental, 2019, 258, 117793.	10.8	41
90	Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali. Korean Journal of Chemical Engineering, 2019, 36, 740-752.	1.2	18

#	Article	IF	CITATIONS
91	Preparation of Ethyl Cellulose Composite Film with Down Conversion Luminescence Properties by Doping Perovskite Quantum Dots. ChemistrySelect, 2019, 4, 6516-6523.	0.7	10
92	Preparation of Nanocellulose with High-Pressure Homogenization from Pretreated Biomass with Cooking with Active Oxygen and Solid Alkali. ACS Sustainable Chemistry and Engineering, 2019, 7, 9378-9386.	3.2	32
93	Efficient synthesis of bio-monomer 2,5-furandicarboxylic acid from concentrated 5-hydroxymethylfurfural or fructose in DMSO/H2O mixed solvent. Journal of Industrial and Engineering Chemistry, 2019, 77, 209-214.	2.9	38
94	Catalytic Transfer Hydrogenolysis/Hydrogenation of Biomass-Derived 5-Formyloxymethylfurfural to 2, 5-Dimethylfuran Over Ni–Cu Bimetallic Catalyst with Formic Acid As a Hydrogen Donor. Industrial & Engineering Chemistry Research, 2019, 58, 5414-5422.	1.8	47
95	Efficient Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Fe ₂ O ₃ -Promoted MnO ₂ Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 7812-7822.	3.2	71
96	Drying methods, carrier materials, and length of storage affect the quality of xylooligosaccharides. Food Hydrocolloids, 2019, 94, 439-450.	5.6	11
97	Anti-inflammatory action of YHQ by regulating 5-LOX/COX-2/NF-κB/MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells. Journal of Herbal Medicine, 2019, 17-18, 100269.	1.0	1
98	Synthesis of 5-aminolevulinic acid with nontoxic regents and renewable methyl levulinate. RSC Advances, 2019, 9, 10091-10093.	1.7	5
99	Synthesis of peroxidaseâ€encapsulated sodium cellulose sulphate/polyâ€dimethylâ€diallylâ€ammonium chloride biopolymer via polyelectrolyte complexation for enhanced removal of phenol. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2296.	0.8	2
100	Survivin facilitates Tâ€helper 2–biased inflammation in the airway. International Forum of Allergy and Rhinology, 2019, 9, 656-664.	1.5	9
101	pVAX1-A20 alleviates colitis in mice by promoting regulatory T cells. Digestive and Liver Disease, 2019, 51, 790-797.	0.4	5
102	Strategies for achieving highâ€level and stable production of toxic Streptomyces phospholipase D in Escherichia coli. Journal of Chemical Technology and Biotechnology, 2019, 94, 1220-1229.	1.6	5
103	Stability of Soluble Dialdehyde Cellulose and the Formation of Hollow Microspheres: Optimization and Characterization. ACS Sustainable Chemistry and Engineering, 2019, 7, 2151-2159.	3.2	37
104	Highly Efficient Reductive Etherification of 5â€Hydroxymethylfurfural to 2,5â€Bis(Alkoxymethyl)Furans as Biodiesel Components over Zr‧BA Catalyst. Energy Technology, 2019, 7, 1801071.	1.8	22
105	Efficient synthesis of glucose into 5-hydroxymethylfurfural with SO42â^'/ZrO2 modified H+ zeolites in different solvent systems. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 431-438.	2.7	35
106	Development of Betaineâ€Based Sustainable Catalysts for Green Conversion of Carbohydrates and Biomass into 5â€Hydroxymethylfurfural. ChemSusChem, 2019, 12, 495-502.	3.6	42
107	Biomass pretreatment by cooking with active oxygen and solid alkali (CAOSA): Selectively oxidation of CAOSA wastewater to formic and acetic acids. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 315-320.	2.7	6
108	Chemoselective Hydrogenation of Biomass-derived 5-hydroxymethylfurfural into Furanyl Diols. Current Organic Chemistry, 2019, 23, 2155-2167.	0.9	8

#	Article	IF	CITATIONS
109	Der p2‑A20 DNA vaccine attenuates allergic inflammation in mice with allergic rhinitis. Molecular Medicine Reports, 2019, 20, 4925-4932.	1.1	6
110	The Bioeconomy of Microalgal Biofuels. Green Energy and Technology, 2018, , 157-169.	0.4	12
111	Preparation of 5â€(Aminomethyl)â€2â€furanmethanol by direct reductive amination of 5â€Hydroxymethylfurfural with aqueous ammonia over the Ni/SBAâ€15 catalyst. Journal of Chemical Technology and Biotechnology, 2018, 93, 3028-3034.	1.6	32
112	One-pot tandem conversion of fructose into biofuel components with in-situ generated catalyst system. Journal of Energy Chemistry, 2018, 27, 375-380.	7.1	23
113	Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology, 2018, 255, 293-301.	4.8	61
114	Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Research International, 2018, 106, 383-393.	2.9	59
115	Efficient conversion of fructose to 5-[(formyloxy)methyl]furfural by reactive extraction and in-situ esterification. Korean Journal of Chemical Engineering, 2018, 35, 1312-1318.	1.2	14
116	Microalgae for biobutanol production – Technology evaluation and value proposition. Algal Research, 2018, 31, 367-376.	2.4	57
117	Synthesis of bis(amino)furans from biomass based 5-hydroxymethyl furfural. Journal of Energy Chemistry, 2018, 27, 209-214.	7.1	28
118	An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Industrial Crops and Products, 2018, 112, 18-23.	2.5	69
119	Using a trait-based approach to optimize mixotrophic growth of the red microalga Porphyridium purpureum towards fatty acid production. Biotechnology for Biofuels, 2018, 11, 273.	6.2	18
120	Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source. Journal of Catalysis, 2018, 368, 69-78.	3.1	95
121	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan over tunable Zr-based bimetallic catalysts. Catalysis Science and Technology, 2018, 8, 4474-4484.	2.1	58
122	Cooking with active oxygen and solid alkali facilitates lignin degradation in bamboo pretreatment. Sustainable Energy and Fuels, 2018, 2, 2206-2214.	2.5	26
123	Ammonium chloride: a novel effective and inexpensive salt solution for phycocyanin extraction from Arthrospira (Spirulina) platensis. Journal of Applied Phycology, 2017, 29, 1261-1270.	1.5	31
124	Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products, 2017, 99, 1-6.	2.5	109
125	Chemical Structure Change of Magnesium Oxide in the Wet Oxidation Delignification Process of Biomass with Solid Alkali. ChemCatChem, 2017, 9, 2544-2549.	1.8	16
126	Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 287-296.	8.2	165

#	Article	IF	CITATIONS
127	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2696-2706.	3.6	269
128	An effective pathway for 5-brominemethylfurfural synthesis from biomass sugars in deep eutectic solvent. Journal of Chemical Technology and Biotechnology, 2017, 92, 2929-2933.	1.6	15
129	One-pot synthesis of high fructose corn syrup directly from starch with SO 4 2â^' /USY solid catalyst. Korean Journal of Chemical Engineering, 2017, 34, 1924-1929.	1.2	1
130	Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum. Bioprocess and Biosystems Engineering, 2017, 40, 1763-1773.	1.7	15
131	Cooking with Active Oxygen and Solid Alkali: A Promising Alternative Approach for Lignocellulosic Biorefineries. ChemSusChem, 2017, 10, 3982-3993.	3.6	36
132	5-Aminolevulinic acid promotes arachidonic acid biosynthesis in the red microalga Porphyridium purpureum. Biotechnology for Biofuels, 2017, 10, 168.	6.2	20
133	Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem, 2017, 10, 2695-2695.	3.6	15
134	Towards targeted cancer therapy: Aptamer or oncolytic virus?. European Journal of Pharmaceutical Sciences, 2017, 96, 8-19.	1.9	23
135	Active Oxygen and Solid Alkali Pretreatment of Bamboo Residue: Features of Hemicellulose during the Cooking Process. BioResources, 2017, 12, .	0.5	3
136	Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach. Frontiers in Plant Science, 2016, 7, 113.	1.7	50
137	Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess and Biosystems Engineering, 2016, 39, 1129-1136.	1.7	36
138	Stable and efficient CuCr catalyst for the solvent-free hydrogenation of biomass derived ethyl levulinate to γ-valerolactone as potential biofuel candidate. Fuel, 2016, 175, 232-239.	3.4	33
139	Tandem thionation of biomass derived levulinic acid with Lawesson's reagent. Green Chemistry, 2016, 18, 2971-2975.	4.6	14
140	Sustainable microalgaeâ€based palm oil mill effluent treatment process with simultaneous biomass production. Canadian Journal of Chemical Engineering, 2016, 94, 1848-1854.	0.9	13
141	Flotation: A promising microalgae harvesting and dewatering technology for biofuels production. Biotechnology Journal, 2016, 11, 315-326.	1.8	61
142	Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresources and Bioprocessing, 2016, 3, .	2.0	39
143	Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnology for Biofuels, 2016, 9, 47.	6.2	96
144	Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal, 2016, 109, 282-296.	1.8	225

#	Article	IF	CITATIONS
145	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	2.5	29
146	Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Advances, 2016, 6, 27004-27007.	1.7	42
147	Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan. Green Chemistry, 2016, 18, 1080-1088.	4.6	136
148	Harvesting of Microalgal Biomass. Green Energy and Technology, 2016, , 77-89.	0.4	12
149	One Pot Synthesis of Pharmaceutical Intermediate 5-Dimethylaminomethyl-2-Furanmethanol from Bio-Derived Carbohydrates. Journal of Biobased Materials and Bioenergy, 2016, 10, 378-384.	0.1	3
150	Catalytic Conversion of Glucose to Levulinate Ester Derivative in Ethylene Glycol. BioResources, 2015, 10, .	0.5	3
151	Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp Bioresource Technology, 2015, 191, 385-390.	4.8	21
152	Microalgae biomass harvesting by bioflocculation-interpretation by classical DLVO theory. Biochemical Engineering Journal, 2015, 101, 160-167.	1.8	62
153	NaCSâ€PDMDAAC immobilized cultivation of recombinant <i>Dictyostelium discoideum</i> for soluble human Fas ligand production. Biotechnology Progress, 2015, 31, 424-430.	1.3	1
154	Methyl 4-methoxypentanoate: a novel and potential downstream chemical of biomass derived gamma-valerolactone. RSC Advances, 2015, 5, 8297-8300.	1.7	5
155	Depolymerization of Cellulolytic Enzyme Lignin for the Production of Monomeric Phenols over Raney Ni and Acidic Zeolite Catalysts. Energy & Fuels, 2015, 29, 1662-1668.	2.5	61
156	Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresource Technology, 2015, 180, 281-287.	4.8	84
157	Inâ€Situ Catalytic Hydrogenation of Biomassâ€Derived Methyl Levulinate to γâ€Valerolactone in Methanol. ChemSusChem, 2015, 8, 1601-1607.	3.6	56
158	Inâ€Situ Generated Catalyst System to Convert Biomassâ€Derived Levulinic Acid to γâ€Valerolactone. ChemCatChem, 2015, 7, 1372-1379.	1.8	62
159	Atom-economical synthesis of γ-valerolactone with self-supplied hydrogen from methanol. Chemical Communications, 2015, 51, 16320-16323.	2.2	13
160	Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renewable and Sustainable Energy Reviews, 2015, 42, 1385-1392.	8.2	64
161	Conversion of Biomass-Derived Furfuryl Alcohol into Ethyl Levulinate Catalyzed by Solid Acid in Ethanol. BioResources, 2014, 9, 2634-2644.	0.5	41
162	Production of 2,5-Diformylfuran from Biomass-derived Glucose via One-Pot Two-Step Process. BioResources, 2014, 9, .	0.5	10

#	Article	IF	CITATIONS
163	Aerobic Selective Oxidation of Biomass-derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran with Active Manganese Dioxide Catalyst. BioResources, 2014, 9, 4656-4666.	0.5	9
164	Falling film evaporation characteristics of microalgae suspension for biofuel production. Applied Thermal Engineering, 2014, 62, 341-350.	3.0	9
165	Conversion of biomass to Î ³ -valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides. Applied Catalysis B: Environmental, 2014, 147, 827-834.	10.8	285
166	Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Research, 2014, 6, 186-193.	2.4	66
167	Novel Process for the Extraction of Ethyl Levulinate by Toluene with Less Humins from the Ethanolysis Products of Carbohydrates. Energy & Fuels, 2014, 28, 4251-4255.	2.5	31
168	Production of Î ³ -valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renewable and Sustainable Energy Reviews, 2014, 40, 608-620.	8.2	232
169	<i>In-Situ</i> -Prepared Nanocopper-Catalyzed Hydrogenation–Liquefaction of Biomass in a Glycerol–Methanol Solvent for Biofuel Production. Energy & Fuels, 2014, 28, 4273-4281.	2.5	7
170	Comparative physicochemical analysis of suspended and immobilized cultivation of <i>Chlorella</i> sp Journal of Chemical Technology and Biotechnology, 2013, 88, 247-254.	1.6	18
171	Characterization of sodium cellulose sulphate/polyâ€dimethylâ€diallylâ€ammonium chloride biological capsules for immobilized cultivation of microalgae. Journal of Chemical Technology and Biotechnology, 2013, 88, 599-605.	1.6	12
172	Solubility properties and diffusional extraction behavior of natamycin from <i>streptomyces gilvosporeus</i> biomass. Biotechnology Progress, 2013, 29, 109-115.	1.3	9
173	Pool boiling characteristics of microalgae suspension for biofuels production. Applied Thermal Engineering, 2013, 50, 1369-1375.	3.0	12
174	Use of biodieselâ€derived crude glycerol for vancomycin production by <i>Amycolatopsis orientalis</i> XMUâ€VS01. Engineering in Life Sciences, 2013, 13, 109-116.	2.0	5
175	Body attributes of both parents jointly affect offspring sex allocation in a socially monogamous, size-monomorphic passerine. Environmental Epigenetics, 2013, 59, 271-277.	0.9	4
176	Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 2012, 183, 192-197.	6.6	97
177	NaCS–PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187, 185-192.	6.6	42
178	Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 2011, 15, 3252-3260.	8.2	222
179	Interspecific dominance and asymmetric competition with respect to nesting habitats between two snowfinch species in a highâ€altitude extreme environment. Ecological Research, 2009, 24, 607-616.	0.7	40
180	Reproductive ecology of Brown-cheeked Laughing Thrushes (Garrulax henrici) in Tibet. Journal of Field Ornithology, 2008, 79, 152-158.	0.3	26

#	Article	IF	CITATIONS
181	Comparisons of the alpine bird communities across habitats and between autumn and winter in the mid‥along Zangbo River valley, Tibet. Journal of Natural History, 2007, 41, 2511-2527.	0.2	6